КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Введение в теорию статистических решений
НЕПОРОГОВЫЕ МЕРЫ ЧУВСТВИТЕЛЬНОСТИ Современные методы измерения чувствительности сенсорных систем, появившиеся из приложения к задачам психофизики теории обнаружения сигнала и теории статистических решений, не используют понятия «порог ощущения» в том виде, как его понимали в классической психофизике. Это привело к разработке принципиально новых подходов к измерению чувствительности, в основе которых лежат следующие основные представления: - процесс формирования образа является стохастическим процессом (т.е. носит вероятностный характер), причем причиной этого является в основном собственные особенности сенсорной системы; - в функционировании сенсорной системы можно выделить два основных компонента, которые образуют единое целое – во-первых, собственно сенсорный процесс в его привычном традиционном смысле и, во-вторых, внесенсорную часть, включающую в себя процессы принятия решения и связанную с целями, мотивацией и иными, так называемыми несенсорными факторами. Предложенные в русле этого подхода меры чувствительности сенсорной системы кардинально отличаются от традиционных пороговых и носят непороговый характер. Для их получения разработаны специальные методы и процедуры, рассмотрение которых требует предварительного ознакомления с основами теории статистических решений.
(теория принятия решений в неопределенных ситуациях)
Большая часть жизненных ситуаций и обстоятельств, в которых приходится действовать человеку, являются неоднозначными - т.е. когда возможно различное толкование обстоятельств и, соответственно, выполнение тех или иных действий. Причины такой «неоднозначности» могут корениться как вовне – в неопределенности объективных жизненных обстоятельств и условий деятельности (либо в неполноте информации о реальных событиях, которую получает человек), так и внутри самого человека – в недостатке возможностей, знаний или желания разобраться в ситуации. Действия человека в этих условиях будут существенно отличаться от действий в детерминистических обстоятельствах (т.е. допускающих однозначное толкование), в которых существует или может быть найден четкий алгоритм действий. Поведение и деятельность в вероятностной (стохастической, неопределенной) внешней среде требует от субъекта включения в работу новых элементов и процессов, и в первую очередь усложнение коснется процессов принятия решений. В самом простом виде линейная схема процессов построения поведенческого акта в интересующей нас части будет выглядеть следующим образом (см. рис.5).
Рис.5. Схема построения поведенческого акта при деятельности в неопределенных условиях (пояснения см. в тексте)
В приведенной на рис.5 схеме использованы следующие обозначения: h1, h2,…, hm – все возможные состояния реальной внешней среды, одно из которых является актуальным (т.е. существующим) в текущий момент времени; H1, H2,…, Hm – гипотезы о состояниях внешней среды. e1, e2,…, en – апостериорная информация о текущем состоянии внешней среды – то есть те сведения, которые субъект получает путем непосредственного наблюдения за средой, от других людей, из средств массовой информации и т.д.; Приведем четыре примера таких ситуаций, с которыми может столкнуться субъект, но, естественно, в их упрощенном варианте:
Главная задача, которую решает человек при принятии решения в каждой из этих ситуаций, – выбор правильной гипотезы (представления) о состоянии среды и, соответственно, выполнение в последующем действий, которые приведут к достижению желаемой цели. При этом имеется в виду, что принимающий решение не имеет полной и исчерпывающей информации о состоянии среды. Если такая информация есть, то принятие решения редуцируется до простой детерминированной процедуры. Например, в ситуации «Покупатель» такой информацией может быть обнаружение у товара явного дефекта, в ситуации «Охотник» – охотник увидел зайца своими глазами, - то есть поступившей информации достаточно для достоверного подтверждения истинности одной из выдвинутых гипотез H2 или H1. В случае же, когда ситуация неопределенна (неоднозначна), принятие решения начинает осуществляться по законам, которые описываются теорией статистических решений. Основная задача, которую решает теория статистических решений, – проверка истинности (правдоподобности) гипотез Hi о состоянии среды на основании поступившей информации ej о реальном состоянии среды hi. (Полагаем 0 £ i £ m; 0 £ j £ n). При этом главным является вопрос о правилах (процедурах), на основании которых можно принять или отклонить гипотезу – т.е. принять решение.
3.1.1. Правило принятия решения
В теории статистических решений существует очень простое и вместе с тем достаточно общее решающее правило. Однако, прежде чем сформулировать его, необходимо определить ряд новых понятий, которые позволят дать вероятностное описание ситуации. Еще до попадания в ситуацию, в которой будет необходимо принимать решение, у человека имеются определенные знания, представления и предположения о ней. Можно сказать, что у субъекта формируется некоторая предвосхищающая модель ситуации (среды), в которой ему предстоит действовать. Совокупность этих знаний и представлений независимо от их источника, будем называть априорной информацией (т.е. полученной априори, «до опыта»). Если речь идет о конкретных событиях, которые должны произойти в будущем, и относительно которых у субъекта есть некоторая априорная информация, то можно говорить об априорной вероятности этих событий. Априорная вероятность – это сформированная на основе имеющейся априорной информации оценка возможности наступления события в будущей ситуации, в которой предстоит принимать решение. Обозначаются априорные вероятности q. Как правило, предполагается, что субъект формирует оценку априорных вероятностей qi=p(hi) возможных состояний среды hi, так как в любой ситуации человек стремится спрогнозировать дальнейшее развитие событий. Поскольку множество этих состояний образует полную систему событий, то сумма их априорных вероятностей должна быть равна единице: . (4) Априорные вероятности человек оценивает до получения информации о состоянии среды ej, основываясь на своих знаниях, представлениях, ранее полученной информации и т.д.
Так, в примере «Охотник» априорные вероятности наличия зайца в лесу q1=p(h1), и его отсутствия там q2=p(h2) могут определяться охотником на основании рассказов местных жителей из соседней деревни или его воспоминаний о прошлой охоте в этом лесу, и т.д. Другими словами, q1 и q2 отражают оценку охотником возможности существования состояния среды h1 (заяц есть) состояния h2 (зайца нет) еще до того, как он отправился в лес на охоту. После получения информации ej самое важное изменение знаний о среде будет состоять в том, что уже существующие априорные вероятности p(hi) перейдут в апостериорные вероятности p(hi /ej). Апостериорная вероятность p(hi /ej) - вероятность того, что действительно может иметь место состояние среды hi с учетом полученной информации ej. То есть это представления субъекта о возможном состоянии среды, опирающееся на его предварительные (априорные) знания о ней, но уже скорректированные, измененные с учетом поступившей (апостериорной) информации.
В примере «Охотник» p(h1/e1) отражает субъективную вероятность наличия в кустах зайца после того, как охотник услышал оттуда шорох, p(h2/e1) -. субъективную вероятность отсутствия зайца при наличии шороха, p(h2/e2) – субъективную вероятность отсутствия зайца при отсутствии шороха, p(h1/e2) – субъективную вероятность наличия зайца при отсутствии шороха. Эти величины (апостериорные вероятности) являются основной информацией, на которой базируется принятие решения.
Правило принятия решения в этом случае состоит в том, чтобы сравнить между собой апостериорные вероятности различных гипотез и принять ту из них, для которой апостериорная вероятность наибольшая.
Для самого простого случая, когда возможны только два состояния среды (h1 и h2) и, соответственно, высказывается простая двухальтернативная гипотеза (H1 и H2), правило принятия решения выглядит следующим образом:
если p(h1 /ej) > p(h2 /ej), то принимается гипотеза H1, если p(h1 /ej) < p(h2 /ej), то принимается гипотеза H2.
Таким образом, смысл правила принятия решения состоит в том, что принимается наиболее вероятная гипотеза с учетом полученной информации ej. Вербальная формулировка решающего правила может быть следующей: - если с учетом поступившей апостериорной информации ej вероятность существования состояния среды h1 будет больше вероятности существования состояния h2, то принимается гипотеза H1; - если с учетом поступившей апостериорной информации ej вероятность существования состояния среды h1 будет меньше вероятности существования состояния h2, то принимается гипотеза H2. На основании теоремы Байеса имеем: P(h1 /ej) = , (5) и решающее правило можно теперь записать так: Если < , то принимаем H1; (6 a) Если , то принимаем H2. (6 b) Здесь: p(ej /h2) – вероятность того, что появление апостериорной информации ej вызвано состоянием среды h2; p(ej /h1) – вероятность того, что появление апостериорной информации ej вызвано состоянием среды h1.
Используем следующие обозначения: λ (ej) = ; (7) λ0 = . (8) Вновь введенные величины получили названия: λ(ej ) – отношение правдоподобия,
Дата добавления: 2014-11-29; Просмотров: 500; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |