Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Положительные числовые ряды




Основные понятия

Числовые ряды

Ряды

1. Пусть дана бесконечная последовательность чисел а 1, а 2, …, аn. Числовым рядом называется сумма вида .

2. Если существует конечный предел частичной суммы , то соответствующий числовой ряд называется сходящимся и его сумма равна S. В противном случае числовой ряд называется расходящимся.

3. Основные свойства сходящихся числовых рядов:

а) Необходимый признак сходимости: если числовой ряд сходится, то .

б) Достаточное условие расходимости: если , то числовой ряд расходится.

в) Если все члены сходящегося числового ряда умножить или разделить на число , то получится сходящийся ряд .

г) Если два сходящихся числовых ряда и почленно сложить (или вычесть), то получатся сходящиеся ряды (или ).

4. Первый признак сравнения рядов. Пусть даны два положительных ряда и . Если, начиная с некоторого номера n, выполняется условие , то:

1) из сходимости ряда следует сходимость ряда ;

2) из расходимости ряда следует расходимость ряда .

5. Второй признак сравнения рядов. Пусть даны два положительных ряда и . Если существует , то оба ряда ведут себя одинаково.

6. При использовании признаков сравнения чаще всего используют эталонные ряды:

1) Геометрический ряд a + aq + aq 2 + … + aqn – 1 + … = сходится при и расходится при .

2) Ряд Дирихле сходится при и расходится при .

3) Частный случай ряда Дирихле при p = 1 – гармонический ряд расходится.

7. Признак Даламбера. Пусть дан положительный ряд и существует предел . Тогда:

1) если , то ряд сходится;

2) если , то ряд расходится;

3) если , то вопрос о сходимости ряда остается открытым.

8. Радикальный признак Коши. Пусть дан положительный ряд и существует предел . Тогда:

1) если , то ряд сходится;

2) если , то ряд расходится;

3) если , то вопрос о сходимости ряда остается открытым.

9. Интегральный признак Коши. Пусть дан положительный ряд . Если существует непрерывная, невозрастающая и неотрицательная функция на такая, что , то ряд и несобственный интеграл ведут себя одинаково.




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 1037; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.