Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Методика формирования термодинамических понятий и первого начала термодинамики




 

В термодинамике основным понятием является понятие «внутренняя энергия». Внутренняя энергия системы – это суммарная энергия всех составных частей системы и их взаимодействий. Это кинетическая энергия хаотического теплового движения частиц системы, потенциальная энергия их взаимодействия, обусловленная структурой системы, энергия электронов на атомных и молекулярных орбиталях, энергия связи в атомных ядрах, энергия элементарных частиц. Она не включает кинетической и потенциальной энергии системы как целого. Внутренняя энергия является однозначной функцией состояния тела, которое определяется рядом параметров (давление, объем, температура). Это означает, что в каждом состоянии тело (или система) облада­ет лишь одним значением внутренней энергии. Следовательно, изменение внутренней энергии системы при переходе из одного состояния в другое не зависит от этогопере­хода, т.e. внутренняя энергия является функцией состояния сис­темы, а не функцией процесса.

Если рассматривать идеальный газ, то его внутренняя энергия представляет собой только суммарную кинетическую энергию теплового движения его молекул. Именно такое понимание и должно быть сформировано у учащихся. В этом случае все-таки методически верно показать учащимся, откуда берется формула для расчета внутренней энергии. Термодинамическая трактовка понятия внутренней энергии не полностью раскрывает его смысл. Для более полного определения этого понятия необходимо рассмотреть его молекулярно-кинетическую трактовку.

Это можно сделать на основе следующих рассуждений.

Внутренняя энергия равна суммарной кинетической энергии молекул идеального газа

.

Где – число молекул в газе, а – средняя кинетическая энергия одной молекулы одноатомного газа. Тогда

. Учитывая, что окончательно

Последующий анализ этого уравнения позволяет сделать вывод о том, что внутренняя энергия идеального газа прямо пропорциональна абсолютной температуре и зависит только от температуры.

Переход к изучению понятий «работа» и «количество теплоты» связан с актуализацией знаний из курса физики основной школы о способах изменения внутренней энергии. В 8 классе был фактически на качественном уровне сформулирован первый закон термодинамики: внутреннюю энергию можно изменить либо теплопередачей, либо совершением работы.

Вначале необходимо записать формулу изменения внутренней энергии

Внутренняя энергия может изменяться под действием каких-либо внешних факторов: либо при совершении работы, либо в процессе теплопередачи. В первом случае мерой изменения внут­ренней энергии является работа, во втором - количество переданной теплоты. Работа, так же как и количество теплоты, зависит не только от конечного и начального состояний системы, но и от того, при каком процессе происходило изменение состояния. Количество теплоты и работа характеризуют процесс изменения состояния и не являются функциями состояния.

Следует разъяснить школьникам, что работа и теплопередача - неравноценные способы изменения энергии. Работа - изменение энергии упорядоченного движения, совершение работы может привести к изменению как механической, так и внутренней энер­гии. При теплопередаче изменяется энергия хаотического движения частиц системы, а это ведет лишь к изменению ее внутренней энергии.

Используя первый закон термодинамики, показывают, как из­меняется внутренняя энергия идеального газа при различных изопроцессах, и объясняют характер этого изменения с молекулярной кинетической точки зрения.

Понятие количества теплоты и калориметрические расчеты достаточно полно изучают в базовом курсе физике, поэтому в старших классах этот материал лишь повторяют.

Изучение первого закона термодинамики продолжает формирование представления старшеклассников о фундаментальном естественнонаучном принципе - принципе сохранения энергии

Прежде чем приступить к изучению первого закона термодинамики, целесообразно повторить закон сохранения энергии в механических процессах, при этом особое внимание уделяют обсуждению вопроса о том, что механическая энергия сохраняется в замкнутых консервативных системах. Если система не является консервативной, то ее механическая энергия не сохраняется, она частично или полностью превращается во внутреннюю энергию, но при этом сохраняется полная энергия системы.

Далее рассматривают, какими способами можно изменить внутреннюю энергию системы. Этот материал изучали в базовом курсе физики, поэтому здесь его повторяют и обобщают. В ре­зультате школьников подводят к выводу: внутреннюю энергию можно изменить либо в процессе теплопередачи, либо при совер­шении работы, либо при совершении работы и при теплопередаче одновременно.

Обсуждают вопрос о мерах изменения внутренней энергии при том или ином процессе. Учащиеся делают вывод: мерой измене­ния внутренней энергии в процессе совершения работы является работа, а мерой изменения внутренней энергии в процессе тепло­передачи - количество теплоты. Здесь же целесообразно повторить вопрос о знаках этих величин. Условились считать количество теплоты положительным (Q > 0), если количество теплоты сооб­щается системе, и отрицательным (Q < 0), если количество теплоты отдано системой.

Работу А, совершаемую внешними силами над системой, счи­тают положительной > 0), если газ сжимается; работа внешних сил отрицательна, если газ расширяется (А < 0).

рассмотрев ряд примеров, делают вывод: изменение внутренней энергии системы равно сумме количества теплоты, переданного системе, и работе внешних сил над системой:

ΔU=Q+ A

где ΔU - изменение внутренней энергии, равное разности значений внутренней энергии в конечном и в начальном состояниях.

эту формулу можно записать иначе:

Q - ΔU + А', (А' =А).

Количество теплоты, сообщенное системе, идет на увеличение её внутренней энергии и на совершение системой работы над внешними телами.

Анализируя формулу первого закона термодинамики, целесообразно еще раз подчеркнуть, что внутренняя энергия характеризует состояние системы независимо от способа изменения этого состояния, так как внутренняя энергия системы однозначно определяется параметрами: объемом V и температурой Т. Работа и количество теплоты характеризуют процесс изменения состояния. При одинаковом изменении состояния эти величины различны (в зависимости от способа перехода системы из одного состояния в другое), хотя сумма их будет одна и та же.

 

 

Содержание раздела «Электродинамика». Этапы формирования понятия «электромагнитное поле»

Раздел «Электродинамика»— один из наиболее сложных разделов школьного курса, где изучают электрические, магнитные явления, электромагнитные колебания и волны, вопросы волновой оптики и элементы специальной теории относительности.

Решение общеобразовательных задач в основном сводится к тому, что в данном разделе должно быть введено основное для современной физики понятие электромагнитного поля, а также физические понятия: электрический заряд, электромагнитные колебания, электромагнитная волна и ее скорость. Здесь же должны быть даны представления о свойствах электромагнитных волн, их распространении, о принципах радиосвязи, телевидения. Учащихся на доступном им уровне знакомят с фундаментальной физической теорией — теорией макроскопической электродинамики, основным творцом которой был Дж. К. Максвелл.

При изучении раздела «Электродинамика» происходит расширение и углубление в сознании школьников понятия материи. До этого они изучали лишь один вид материи — вещество. Теперь встречаются со вторым (особым) видом материи — электромагнитным полем, познают его отличие от вещества.

Если рассматривать логическую структуру раздела «Электродинамика», то в ней надо выделить: формирование понятия электромагнитного поля и электрического заряда; изучение взаимодействия поля и вещества, электрических и магнитных свойств вещества; изучение законов тока и электрических цепей; знакомство с элементами СТО; показ основных технических применений электродинамики.

Классическая механика исходила из принципа дальнодействия и представления о мгновенной передаче этого действия. В случае же электромагнитного взаимодействия, как показало развитие науки, необходимо исходить из принципа близкодействия, при этом учитывать конечную скорость передачи действия. Если бы справедлив был принцип дальнодействия, то в электромагнетизме основным понятием был бы электрический заряд q, а поле являлось всего лишь вспомогательным понятием. В действительности без понятия электромагнитного поля (совместно с понятием электрического заряда q) нет электродинамики. В решении этих важнейших для электродинамики вопросов существенную роль сыграли работы М. Фарадея, а определяющую — работы Дж. К. Максвелла.

В электродинамике рассматривают различные силы:

1) Силы, характеризующие взаимодействие покоящихся зарядов для вакуума. Они носят центральный характер, зависят от расстояния между взаимодействующими зарядами и не зависят от скорости.

2) Сила взаимодействия тока и магнитной стрелки (опыт Эрстеда) действует по линии, соединяющей их, зависит не только от расстояния между взаимодействующими объектами, но и от силы тока, которая, в свою очередь, зависит от скорости движения заряженных частиц и заряда.

3) Силы, возникающие между двумя параллельными проводниками с током, не являются центральными. Они пропорциональны силе тока в проводниках (а значит, и заряду) и скорости его движения и обратно пропорциональны расстоянию между ними.

4) Сила, действующая на движущийся заряд со стороны магнитного поля. Она зависит от скорости движения заряда, но не является центральной.

Во всех случаях говорится о скорости частиц относительно какой-то системы отсчета, именно это и учитывают в электродинамике. В электродинамике рассматривают силы, которые не только зависят от расстояний, но и от скорости движения зарядов в выбранной системе отсчета. Подобные силы в механике Ньютона не рассматривали.

Ведущая роль в преподавании физики отводится физическому эксперименту. Не исключение и раздел «Электродинамика». В первую очередь это следующие опыты: 1) Кулона по установлению зависимости силы взаимодействия двух электрических зарядов от модуля этих зарядов и расстояния между ними; 2) Эрстеда по обнаружению действия электрического тока на магнитную стрелку; 3) Ампера по взаимодействию параллельных токов; 4) Ома, вскрывающий характер зависимости между силой тока и напряжением; 5) Фарадея по электромагнитной индукции; 6) Герца по получению, обнаружению и выяснению свойств электромагнитных волн; 7) Рикке по выяснению носителей тока в металлах; 8) Толмена и Стюарта, Мандельштама и Папалекси, доказывающие электронную проводимость металлов; 9) Милликена и Иоффе, подтвердившие атомистическое строение электричества и позволившие измерить элементарный: электрический заряд; 10) Майкельсона и Морли, не обнаружившие преимущественной системы отсчета; 11) Ремера, Физо и других ученых по измерению скорости света; 12) Юнга, обнаружившие волновые свойства света, и т. д.

При изучении основ электродинамики применяют следующие модели: свободный электрон, модель электронного газа, модель проводника и диэлектрика (на основе представлений о свободных электронах), зонная модель проводника, диэлектрика, полупроводника. При изучении электромагнитных явлений широко применяют и аналогии: между гравитационным и электростатическим полями; между электрическим током и потоком жидкости; явлением самоиндукции и инерции; явлением термоэлектронной эмиссии и испарением жидкости и др. В ряде случаев для повышения наглядности обучения можно использовать материальные модели-аналогии. В электродинамике это, главным образом, функциональные модели-аналогии.

Еще одна особенность раздела «Электродинамика»— насыщенность его мировоззренческим и политехническим материалом. Необходимо так организовать работу учащихся, чтобы они глубоко и прочно усвоили этот материал. Целесообразно осветить роль в развитии физики и техники таких ученых, как А. Ампер, М. Фарадей, Дж. К. Максвелл, Ш. Кулон, М. В. Ломоносов, Э. Ленц, А. Г. Столетов, Я. И. Френкель, Л. Д. Ландау, П. Н. Лебедев, А. С. Попов, Г. Герц, А. Эйнштейн, Т. Юнг, А. Ф, Иоффе, Н. Д. Папалекси, Л. И. Мандельштам и др.

Формирование понятия электромагнитного поля в курсе физи­ки средней школы начинают в базовом курсе, а завершают в старших классах профильной школы. В базовом курсе при введе­нии элементарных сведений об электромагнитных явлениях дают первоначальные представления об электрическом и магнитном полях, в старших классах - проводят количественное изучение электромагнитных явлений, рассматривают частные случаи элек­тромагнитного поля, их свойства и характеристики, вводят поня­тие электромагнитного поля; при изучении электромагнитных волн вводят понятие свободного электромагнитного поля, знания об электромагнитном поле расширяют и обобщают при изучении волновой оптики и квантовой физики.

Обычно понятие электрического ноля вводят при изучении электростатических явлений и связывают с покоящимися заряда­ми, а понятие магнитного поля вводят при изучении постоянного тока и связывают с током или движущимися зарядами. Понятие электромагнитного поля можно вводить в различных местах раз­дела «Электродинамика»: при изучении магнитного поля движу­щегося заряда, при изучении электромагнитных колебаний и волн. Программа общеобразовательной средней школы рекомен­дует ввести это понятие при изучении явления электромагнитной индукции.

На наш взгляд, наиболее целесообразно вводить понятие элект­ромагнитного поля в начале изучения раздела «Электродинамика».

Начать изучение учебного материала целесообразно с развер­нутого введения в электродинамику, где на основе уже имеющихся у школьников знании вводят первоначальные представления об электромагнитном поле.




Поделиться с друзьями:


Дата добавления: 2014-12-27; Просмотров: 2317; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.027 сек.