Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Методика изучения строения атома. Методика изучения энергии связи ядра и ядерных сил




Изучение темы целесообразно начать с повторения о составе и свойствах ядра атома из курса химии и физики 8 класса. Это позволит изучаемые явления (радиоактивность, ядерные реакции и т. д.) не только описать, но и объяснить.

В начале изучения нового материала рассматривается явление радиоактивности, что свидетельствует о сложном строении ядра и об открытии в 1910 г. английским ученым Ф. Содди изотопов, наведшем на мысль, что ядро построено из частиц, атомная масса которых равна единице, т. е. из протонов. При этом учитель должен учесть, что с понятиями «изотопы», «атомная масса» учащиеся знакомы из курса химии. В ходе рассказа вводят понятие «массовое число» и напоминают принцип устройства масс-спектрографа, с которым они знакомились в X классе. Можно упомянуть, что β- радиоактивность наталкивала на мысль, что в состав ядра входят электроны. Однако эта модель оказалась несостоятельной.

Далее сообщают, что в 1932 г. Д. Чедвик открыл новую элементарную частицу — нейтрон, незначительно отличающуюся от протона по массе и не имеющую заряда, что позволило советскому физику Д. Д. Иваненко и независимо от него В. Гейзенбергу предложить протонно-нейтронную модель ядра, общепринятую сегодня. Итак, с современной точки зрения ядро атома состоит из протонов и нейтронов. Число протонов в ядре того или иного атома определяется порядковым номером Z элемента в периодической системе Менделеева, а число нейтронов равно разности между массовым числом А и числом протонов Z.

Знакомя с протонно-нейтронной моделью ядра, необходимо конкретизировать ее отдельными примерами и ознакомить с условным обозначением ядер. Например, в ядре гелия Не (порядковый номер 2, массовое число 4) содержится два протона и 2 = 4—2 нейтрона.

Познакомив учащихся с процессом распада нейтрона необходимо рассказать о том, что, хотя свободный протон - частица устойчивая, внутри ядра (заимствуя энергию у окружающих частиц) протон может распадаться на нейтрон и две другие частицы - позитрон и нейтрино.

Рассматривая более подробно свойства протона и нейтрона, вводят современное представление о существовании лишь одной ядерной частицы — нуклона, находящегося в разных зарядовых состояниях: нейтральном (нейтрон) и заряженном (протон), а это дает возможность объяснить механизм β-распада, не откладывая на конец курса.

Еще изучая опыт Резерфорда по рассеянию α-частиц, учащихся знакомят с такими характеристиками ядра, как заряд и размеры, в этом месте курса физики представляется интересным знакомить школьников с плотностью ядерного вещества. Сделать это нетрудно. Предположим, что ядро состоит из частиц примерно одинакового размера, находящихся на равных расстояниях друг от друга, так что на каждую частицу приходится один и тот же эффективный объем.

Полезно обратить внимание школьников, что плотность ядерного вещества всех ядер одинакова.

Большое внимание следует уделять понятиям, энергии связи ядра и удельной энергии связи, ибо это очень важно для объяснения энергетического выхода ядерных реакций. Чтобы учащиеся поняли лучше вопрос об энергии связи, необходимо напомнить им о потенциальной энергии взаимодействия (Земли и тела, электрона и ядра) и рассказать о том, что любые устойчивые системы частиц обладают энергией связи (например, молекула). Однако лишь в ядрах энергия связи достигает больших значений.

Энергия связи ядра, по определению, равна энергии, которую нужно затратить для расщепления ядра на составляющие его нуклоны без сообщения им кинетической энергии. Эта же энергия (по закону сохранения и превращения энергии) выделяется при образовании ядер.

Внимание учащихся необходимо обратить на то, что масса покоя ядра меньше суммы масс покоя составляющих его нуклонов, т. е. энергия связи частиц в ядре — величина отрицательная.

В ходе объяснения материала целесообразно предложить учащимся самостоятельно рассчитать энергию связи для разных элементов. Для облегчения расчетов надо прежде показать, что дефекту масс в 1 а. е. м. соответствует энергия ≈931 МэВ = = 931∙106 эВ. Тогда расчет энергии связи ядра производят довольно просто. Например, для ядра гелия

Δm=(2mp + 2mn) - mя = (2∙1,007276 + 2∙1,008665) - 4,002600 = 0,029282 а. е. м.

Этому дефекту масс соответствует энергия связи

E= 931 МэВ/а.е.м.∙0,029282 а. е. м. ≈27 МэВ

Далее целесообразно предложить учащимся рассчитать удельную энергию связи некоторых элементов и убедиться, что в среднем она равна 8 МэВ/нуклон. Для урана удельная энергия связи имеет меньшее значение (примерно 7,6 МэВ/нуклон). Ядра атомов элементов, находящихся в середине периодической системы Менделеева (например, криптона), наиболее прочны. Их энергия связи близка к 8,7 МэВ/нуклон.

Этот расчет (особенно при наличии микрокалькуляторов) не занимает много времени, если энергия связи этих элементов была подсчитана на предыдущем уроке, но он способствует уяснению графика зависимости удельной энергии связи от массового числа и полезен при объяснении устойчивости элементов, находящихся в середине периодической системы.

При изучении ядра атома необходимо ознакомить учащихся с ядерными силами. Для облегчения усвоения материала целесообразно сравнивать ядерные силы с уже известными электромагнитными и гравитационными силами. Желательно, называя то или иное свойство сил, указывать, из каких опытных фактов оно вытекает.

Изучение этого материала можно провести по следующему плану:

1. Ядро атома, как известно, состоит из протонов и нейтронов.

Число протонов в ядре равно порядковому номеру элемента в периодической системе Менделеева, и, например, для урана заряд ядра равен 92е. Так как размер ядра очень мал, а кулоновская сила возрастает пропорционально числу протонов, то электростатическая сила отталкивания между протонами в ядре достаточна велика. Между тем ядра атомов — устойчивые образования. Это и заставляет предположить, что между нуклонами в ядре действуют еще другие, ядерные силы, которые способны преодолеть силу кулоновского отталкивания между протонами. Интенсивность ядерных сил в 137 раз больше сил электростатического отталкивания протонов,

2. Ядерные силы зарядово-независимы, т. е. взаимодействие протона с нейтроном, нейтрона с нейтроном, протона с протоном примерно одинаково. В этом можно убедиться, рассчитав энергию связи трития и изотопа гелия. Первый из них содержит 1 протон и 2 нейтрона, а второй 2 протона и 1 нейтрон, а общее число взаимодействующих нуклонов равно 3 в каждом ядре. Энергия связи трития 8,49 МэВ, а гелия — 7,72 МэВ; разницу в 0,77 МэВ объясняют кулоновским отталкиванием протонов в ядре гелия.

3. Ядерные силы короткодействующие. Они действуют лишь на малых расстояниях (1,5—2,2)·10-15 м. При удалении протона из ядра (как только расстояние между ними становится более 4,2·10-15 м) ядерные силы перестают действовать, протон и ядро взаимодействуют между собой лишь с силой электростатического отталкивания.

4. Из того факта, что удельная энергия связи не возрастает в ядрах пропорционально числу нуклонов А, следует, что для ядерных сил характерно насыщение, т. е. каждый нуклон взаимодействует лишь с ближайшими «соседями», а не со всеми нуклонами, находящимися в ядре.

При изучении свойств ядра полезно учащихся ознакомить с капельной моделью ядра (в ознакомительном плане). Необходимые для этого знания (короткодействие ядерных и молекулярных сил, свойственное обеим этим силам насыщение, плотность вещества одинакова для всех ядер) школьники получили. В дальнейшем капельную модель ядра можно использовать для объяснения деления ядер (на качественном уровне).

 


Литература

1. Бугаев А.И. Методика преподавания физике в средней школе: Теорет.основы: Учебное пособие для студ.пед.ин-тов по физ.-мат.спец. – М.: Просвещение, 1981. – 288 с.

2. Мякишев Г.Я. Физика: Учеб.для 10 кл. общеобразоват.учреждений./Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский. – 10-е изд. – М.:Просвещение, 2002. – 336 с.:ил.

3. Основы методики преподавания физики в средней школе/ В.Г.Разумовский, А.И.Бугаев, Ю.И.Дик и др.; Под ред. А.В.Перышкина и др. – М.: Просвещение, 1984. – 398 с.

4. Пурышева Н.С. Дифференцированное обучение в средней школе.

5. Совершенствование преподавания физики в средней школе./под ред. В.Г. Разумовского. — М., 1991.

6. Теория и методика обучения физике в школе: Общие вопросы: Учебное пособие для студ.высш.пед.учеб.заведений/ С.Е.Каменецкий, Н.С.Пурышева, Н.Е.Важеевская и др.; Под ред. С.Е.Каменецкого, Н.С.Пурышевой. – М.: Издательский центр «Академия», 2000. – 368 с.

7. Теория и методика обучения физике в школе: Частные вопросы: Учебное пособие для студ.пед.вузов/ С.Е.Каменецкий, Н.С.Пурышева, Т.И.Носова и др.; Под ред. С.Е.Каменецкого. – М.: Издательский центр «Академия», 2000. – 384 с.

 


 

Учебное издание

ВОЛОДИН АНДРЕЙ МИХАЙЛОВИЧ,

ФРОЛОВ ИВАН ВАЛЕНТИНОВИЧ

 




Поделиться с друзьями:


Дата добавления: 2014-12-27; Просмотров: 1828; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.