КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Выражение векторного произведения через координаты сомножителей
Свойства векторного произведения
1..При перестановке сомножителей векторное произведение меняет знак, т. е. . 2. Векторное произведение обладает сочетательным свойством относительно скалярного множителя, т. е. . 3. . 4. Если два ненулевых вектора коллинеарны, то их векторное произведение равно нулю, и наоборот, из равенства нулю векторного произведения следует коллинеарность векторов. 5.
Пусть даны два вектора и . Найдем их векторное произведение, перемножая их как многочлены, используя свойства векторного произведения: + Полученную формулу можно записать еще короче
Приложения векторного произведения Площадь параллелограмма и треугольника Площадь параллелограмма равна модулю векторного произведения двух его смежных сторон: , Площадь треугольника, построенного на двух сторонах равна половине модуля векторного произведения: Условие коллинеарности векторов Если то и наоборот, т.е.
Смешанное произведение векторов Рассмотрим произведение векторов и , составленное следующим образом: . Здесь первые два вектора перемножаются векторно, а их результат скалярно на третий вектор. Такое произведение называется векторно-скалярным, или смешанным, произведением трех векторов. Смешанное произведение представляет собой некоторое число. Обозначается смешанное произведение:
Дата добавления: 2014-12-29; Просмотров: 1405; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |