КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Уравнение прямой с угловым коэффициентом
Уравнение прямой в отрезках Уравнение прямой, проходящей через две точки Составим уравнение прямой, проходящей через две данные точки и . В качестве направляющего вектора прямой можно взять вектор . Подставим координаты точки и координаты направляющего вектора в каноническое уравнение прямой, получим:
Пусть прямая пересекает ось Ох в точке , а ось Оу - в точке . Подставим координаты этих точек в уравнение прямой, проходящей через две точки, После преобразований получим:
Это уравнение называется уравнением прямой в отрезках, так как числа a и b указывают, какие отрезки отсекает прямая на осях координат.
Опр: Угловым коэффициентом прямой называется тангенс угла между прямой и положительным направлением оси ОХ. Обозначается угловой коэффициент: k=tg , где - угол между прямой и положительным направлением оси ОХ. b- отрезок, который прямая отсекает на оси ОУ уравнение — уравнением прямой с угловым коэффициентом.
Если прямая проходит через начало координат, то b= 0 и, следовательно, уравнение этой прямой будет иметь вид у = кх.
Если прямая параллельна оси Ох, то = 0, следовательно, k= tg = 0 и уравнение примет вид у = b.
Если прямая параллельна оси Оу, то уравнение имеет вид: х = а где а — абсцисса точки пересечения прямой с осью Ох.
Дата добавления: 2014-12-29; Просмотров: 380; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |