КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору
Общее уравнение плоскости Алгебраическое уравнение первой степени в пространстве определяет плоскость. Общее уравнение плоскости можно записать в виде: Ax+ By+ Cz+ D=0 Любую плоскость можно представить в виде такого уравнение единственным способом. с точностью до коэффициента (т. е. при умножении уравнения на число, полученное уравнение задает ту же плоскость) Плоскость в пространстве можно задать различными способами, рассмотрим некоторые из них:
Опр.: Нормалью к плоскости называется вектор, перпендикулярный к данной плоскости. Пусть необходимо составить уравнение плоскости, проходящей через заданную точку и перпендикулярной вектору . Предположим, что такая плоскость построена, возьмем на ней произвольную точку М(x,y,z). Составим вектор . Вектор перпендикулярен вектору , следовательно, их скалярное произведение равно нулю: , это условие имеет вид:: Данный способ задания плоскости называется плоскость по точке М ( и нормали . Имея уравнение плоскости в общем виде: Ax+ By+ Cz+ D=0, можно выписать нормаль к плоскости .
Пример: Составить уравнение плоскости, проходящей через точку А(1,2,-3), параллельно плоскости 3x-4y+5z-2=0 Решение: Выпишем нормаль к плоскости, т.е. вектор перпендикулярный плоскости: . Так как необходимо построить плоскость параллельную данной, то можно использовать вектор в качестве нормали к искомой плоскости. Составляем уравнение плоскости по точке А и нормали : после преобразования получим: 3x-4y+5z+20=0 Ответ: 3x-4y+5z+20=0.
Дата добавления: 2014-12-29; Просмотров: 701; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |