КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
В общем случае выбор элементов течений из пособий осуществляется в такой последовательности
Лоции, в гидрометеорологических обзорах которых дается общая характеристика течений, а также атласы физико-географических данных для целей счисления использовать не рекомендуется, так как в них даются лишь общие сведения о распределении течений. При решении второй задачи элементы течения выбираются для точек начала линии пути и ее конца, считая за конец точку, отстоящую от первой на расстоянии, равном пути корабля за час плавания данной скоростью хода по линии пути без учета течения. Полученные данные осредняются и используются для построения навигационного треугольника, соответствующего одному часу плавания. Если необходимо, нужно повторить выбор элементов течения для второй точки линии пути, найденной построением навигационного треугольника, вновь произвести осреднение и построение навигационного треугольника. Если элементы течения от места к месту или с течением времени резко меняются, продолжительность плавания одним курсом можно уменьшить до 30— 40 мин. Кроме того, для уточнения осредненных элементов течения после первого построения навигационного треугольника за вторую точку, для которой выбираются элементы течения, следует считать не конец отрезка линии курса — точку Е, а конец отрезка найденной линии пути за тот же час плавания, т. е. точку F. С этими новыми данными нужно повторить осреднение элементов течения и построение навигационного треугольника. Нанести счислимое место корабля, рассчитать время и отсчет лага в момент, когда расстояние до ориентира будет заданным. Из места ориентира как из центра на карте провести дугу окружности радиусом, равным заданному расстоянию. Точка ее пересечения с линией пути представляет собой искомое счислимое место корабля. Дальнейшие расчеты подобны изложенным выше.
Задача 1. По известным исходному месту и элементам движения корабля Vл, ИК найти элементы течения v т, Кт (Кт —направление течения относительно истинного меридиана), путь и путевую скорость корабля. Задача 2. По заданным исходному месту, пути и скорости хода корабля найти элементы течения v т, Кт и истинный курс корабля.
Таким образом, если уметь находить элементы приливо-отливного течения на каждый час плавания, то решение поставленных задач будет сведено к уже изложенным выше способам решения задач учета постоянного течения. Для отыскания элементов приливо-отливного течения при решении первой задачи на карте прокладывается линия истинного курса (линия АЕ, рисунок второй сверху), соответствующая плаванию заданной скоростью хода за один час времени. Для начала А и конца Е этой линии выбираются элементы приливного течения: для первой точки А — на начальный момент Т1 плавания, для второй точки Е — на момент Т2 = Т1 +1 ч. Полученные элементы течения осредняются, и это осредненное их значение принимается и учитывается в счислении как постоянное в течение часа плавания. Для следующего часа плавания все действия повторяются. Осредненные значения элементов приливо-отливного течения можно находить и так: для середины отрезка часовой линии курса (первая задача) или середины отрезка линии пути за час плавания (вторая задача) выбрать элементы течения на момент времени Т2 = Т1 + 1/2 ч (рисунки второй и третий сверху). Это и будут искомые значения v т и Кт для одного часа плавания. В некоторых случаях полученные таким образом v т и Кт требуют уточнения, для этого нужно сделать второе приближение: выбрать элементы течения на уточненные первым построением навигационного треугольника места середин линий курса или пути. § 54. Совместный учет дрейфа и течения В § 52 показано, что величина путевого угла с учетом только дрейфа ПУ = ИК + a выражает перемещение корабля относительно водной среды; скорость этого перемещения и проходимые кораблем расстояния определяются по показаниям лага или по оборотам движителей относительно воды. В то же время сама водная среда перемещается со скоростью и по направлению течения. Следовательно, вектор скорости перемещения корабля относительно воды Vл (Vоб) (напоминаю, что вектор обозначается черточкой вверху над буквой) должен откладываться по направлению пути корабля с учетом только дрейфа (ПУa); другой стороной навигационного треугольника будет вектор скорости течения v т, третьей — вектор путевой скорости V. Этим основным положениям и должна соответствовать последовательность расчетов при решении основных задач совместного учета дрейфа и течения. Задача 1. При решении этой задачи сначала учитывается дрейф, а затем — течение. Находится путевой угол с учетом только дрейфа: ПУa = ИК + a. На карте от исходной точки А прокладывается линия пути ПУa (рисунок слева), и по ней в избранном масштабе откладывается вектор скорости корабля относительно воды Vл или Vоб. Из конца вектора Vл в том же масштабе прокладывается вектор течения v т. Прямая, соединяющая исходную точку А с концом вектора течения (точка С), и является линией пути ПУ при суммарном сносе. Угол сноса течением находится по формуле b = ПУ — ПУa. Отрезок АС представляет собой вектор путевой скорости V в принятом масштабе. Задача 2. Эта задача решается в обратной последовательности (рисунок слева). При совместном учете дрейфа и течения, как и при учете только дрейфа, линия курса не проводится; роль линии курса при учете течения выполняет линия пути с учетом только дрейфа. Именно по этой линии следует откладывать пройденные расстояния по лагу Sл или по оборотам Sоб, возле вспомогательных точек на этой линии надписываются только отсчеты лага. Фактическое же перемещение корабля (при отсутствии ошибок в элементах счисления) происходит по линии пути с учетом дрейфа и течения (для краткости она именуется просто линией пути); вдоль нее на карте надписываются компасный курс корабля, поправка компаса (в скобках) и суммарный угол сноса с = a + b. У счислимых точек на линии пути надписываются дробью моменты времени и отсчеты лага. § 55. Основные способы получения сведений об элементах течений. Разгон невязки В предыдущем параграфе рассмотрены способы учета течения, элементы которого (скорость и направление) известны. Теперь кратко рассмотрим основные способы, пользуясь которыми штурман может получить сведения об элементах течений, необходимые ему для учета в счислении. Первым способом является вычисление элементов течений по данным, выбираемым из специальных пособий. При этом надо руководствоваться навигационной классификацией течений, по которой течения разделяются на следующие основные группы. Постоянные (непериодические). Скорость и направление таких течений из года в год почти не изменяются. Периодические. Скорость и направление таких течений повторяются через определенные промежутки времени, обусловливаемые периодами изменения сил, вызывающих течение. К ним относятся, в частности, приливо-отливные течения, скорости и направления которых зависят от астрономических факторов: взаимного расположения Солнца, Земли и Луны. Временные течения, направления и скорости которых зависят от действия эпизодических факторов. К ним относятся, в частности, ветровые (дрейфовые) течения, вызываемые действием ветра. В любой точке моря, строго говоря, могут одновременно наблюдаться действия сил, вызывающие течения всех трех видов. Следовательно, вектор полного (суммарного) течения, которое надо учитывать при прокладке, в общем случае представляет собой сумму трех составляющих: постоянного, периодического и временного течений. Чтобы найти вектор суммарного течения, надо произвести геометрическое (векторное) сложение этих составляющих. Источниками сведений о направлениях и скоростях течений являются: 1. Сведения о скорости и направлении постоянного течения выбираются с карт течений по широте и долготе заданной точки и, если сезонные изменения течений значительны, — по времени года. v т = 0,013U / √ sin φ где U — скорость истинного ветра, выраженная в тех же единицах, что и скорость течения; Предупреждение. Коэффициент формулы 0,013 меняется с изменением U, поэтому при расчетах v т необходимо в Атласе течений брать из специальных таблиц уточненное значение коэффициента.
Дата добавления: 2014-12-25; Просмотров: 885; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |