КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Материалы лекции
Методические рекомендации к изучению темы Тема 11. Многомерные методы обработки данных Многомерные методы обработки данных и их классификация: по назначению, по способу сопоставления данных, по виду исходных данных. Общее знакомство с методами многомерной обработки данных): множественный регрессионный анализ (МРА); множественный дискриминантный анализ ("классификация с обучением"); кластерный анализ; факторный анализ; многомерное шкалирование. Факторный анализ, его сущность и виды. Основные понятия факторного анализа. Этапы проведения факторного анализа. Математико-статистическая обработка результатов психологического исследования с использованием компьютерного пакета Statistica, SPSS, Stadia. Возможности и ограничения конкретных компьютерных методов обработки данных. Данная тема является наиболее сложной в курсе. Обратите внимание на то, что общее знакомство с многомерными методами предполагает знание назначения каждого метода, его общие математико-статистические идеи, требования к исходным данным или — иначе ограничения в применении метода, основные его результаты. Именно с этих позиций и описываются в лекциях многомерные методы. Для более полного знакомства с ними рекомендуем воспользоваться в первую очередь учебником Наследова А. Д. Факторный анализ рассмотрен более подробно ввиду более широкого его использования. После изучения материала лекции ответьте на контрольные вопросы, ответы занесите в конспект и сохраните его до экзамена.
Роль математических методов в любой области знания (не только в психологии) — представление эмпирических данных в пригодном для интерпретации виде, поиск смысла в исходной эмпирической информации. Наследов А. Д. вводит понятие эмпирической математической модели (ЭММ), которые идентичны мыслительным операциям. Эти модели он называет описательными, так как они представляют данные, полученные в исследовании, в удобном для интерпретации виде. Простейшие ЭММ — это, например, средние арифметические значения, вычисляемые для сравниваемых выборок в предположении, что различия в средних отражают различия между представителями групп (напомним, что среднее арифметическое значение отражает тенденцию выраженности свойства в выборке); ранжирование членов группы, которое предполагает, что порядковый номер испытуемого в группе (ранг) отражает выраженность изучаемого свойства; коэффициент корреляции между двумя признаками отражает взаимосвязь между ними, при этом мы исходим из предположения о согласованности индивидуальной изменчивости признаков и т.п. Непосредственно сравнивать, различать, определять взаимосвязь и т.д. мы можем только при небольшой численности испытуемых и признаков. В других случаях, при небольшом числе испытуемых и признаков, мы пользуемся для расчетов калькулятором. Когда выборка большого объема и каждый испытуемый описан большим числом признаков, простейшие ЭММ мало пригодны, тогда возникает необходимость применения многомерных методов анализа и компьютера. Многомерные методы анализа — дальнейшее развитие ЭММ в отношении многостороннего описания изучаемых явлений. Как и простейшие ЭММ, они воспроизводят мыслительные операции человека, но в отношении таких данных, непосредственное осмысление которых невозможно в силу нашей природной ограниченности. Программные реализации многомерных методов анализа относятся к области искусственного интеллекта. Многомерные методы выполняют такие интеллектуальные функции, как структурирование эмпирической информации, классификация, экстраполяция, распознавание образов и т.д. К наиболее часто употребляемым в психологии многомерным методам анализа экспериментальных данных относятся множественный регрессионный анализ, дискриминантный анализ,кластерный анализ, факторный анализ, многомерное шкалирование и др. Эти методы можно классифицировать по трем основаниям: А) интеллектуальная операция (или способ преобразования исходной информации) — по назначению метода; Б) по способу сопоставления данных — по сходству (различию) или пропорциональности (корреляции); В) по виду исходных эмпирических данных.
I. Классификация методов по назначению: 1. Методы предсказания (экстраполяции): множественный регрессионный и дискриминантный анализ. Множественный регрессионный анализ предсказывает значения метрической «зависимой» переменной по множеству известных значений «независимых» переменных, измеренных у множества объектов (испытуемых). Дискриминантный анализ предсказывает принадлежность объектов (испытуемых) к одному из известных классов (номинативной шкале) по измеренным метрическим (дискриминантным) переменным. 2. Методы классификации: варианты кластерного анализа и дискриминантный анализ. Кластерный анализ («классификация без обучения») по измеренным характеристикам у множества объектов (испытуемых) либо по данным об их попарном сходстве (различии) разбивает это множество объектов на группы, в каждой из которых содержатся объекты, более похожие друг на друга, чем на объекты из других групп. Дискриминантный анализ («классификация с обучением», «распознавание образов») позволяет классифицировать объекты по известным классам, исходя из измеренных у них признаков, пользуясь решающими правилами, выработанными предварительно на выборке идентичных объектов, у которых были измерены те же признаки. 3. Структурные методы: факторный анализ и многомерное шкалирование. Факторный анализ направлен на выявление структуры переменных как совокупности факторов, каждый из которых — это скрытая, обобщающая при чина взаимосвязи группы переменных. Многомерное шкалирование выявляет шкалы как критерии, по которым поляризуются объекты при их субъективном попарном сравнении. II. Классификация методов по исходным предположениям о структуре данных: 1. Методы, исходящие из предположения о согласованной изменчивости признаков, измеренных у множества объектов: факторный анализ, множественный регрессионный анализ, отчасти — дискриминантный анализ. 2. Методы, исходящие из предположения о том, что различия между объектами можно описать как расстояние между ними. На дистантной модели основаны кластерный анализ и многомерное шкалирование, частично — дискриминантный анализ. Многомерное шкалирование и дискриминантный анализ добавляют предположение о том, что исходные различия между объектами можно представить как расстояния между ними в пространстве небольшого числа шкал (функций).
III. Классификация методов по виду исходных данных: 1. Методы, использующие в качестве исходных данных только признаки, измеренные у группы объектов. Это множественный регрессионный анализ, дискриминантный анализ и факторный анализ. 2. Методы, исходными данными для которых могут быть попарные сходства (различия) между объектами: это кластерный анализ и многомерное шкалирование. Многомерное шкалирование, кроме того, может анализировать данные о попарном сходстве между совокупностью объектов, оцененном группой экспертов. При этом совместно анализируются как различия между объектами, так и индивидуальные различия между экспертами.
Представленные классификации свидетельствуют о необходимости знаний многомерных методов, их возможностей и ограничений уже на стадии общего замысла исследования. Например, ориентируясь только на факторно-аналитическую модель, исследователь ограничен в выборе процедуры диагностики: она должна состоять в измерении признаков у множества объектов. При этом исследователь ограничен и в направлении поиска: он изучает либо взаимосвязи между признаками, либо межгрупповые различия по измеряемым признакам. Общая осведомленность о других многомерных методах позволит исследователю использовать более широкий круг психодиагностических процедур, решать более широкий спектр не только научных, но и практических задач. Применение многомерных методов требует, разумеется, не только самого компьютера, но и соответствующего программного обеспечения. Широко известны и распространены универсальные статистические программы SТАТISТIСА и SPSS, содержащие практически весь спектр статистических методов — от простейших до самых современных. Наследов А. Д. пишет о том, что он разделяет мнение, что программа SТАТISТIСА обладает прекрасной графикой и гибкостью в обработке данных. Однако программа SPSS имеет свои преимущества: она не только проще в освоении и применении, но и включает в себя ряд методов, отсутствующих в SТАТISТIСА, например, варианты многомерного шкалирования.
Дата добавления: 2014-12-26; Просмотров: 989; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |