Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Конфирматорный




Эксплораторный-разведочный.

Факторные нагрузки

Исходные переменные     Факторные нагрузки h2 (общность)    
F1 F2
  а11 а21 h21
  а12 а22 h22
  а13 а23 h23
  а14 а24 h24
  а15 а25 h25
Собственное значение
Доля дисперсии

 

Основное содержание табл. 39 — величины а11... а25факторные нагруз­ки переменных 1... 5 (строки) по факторам 1 и 2 (столбцы). Факторные на­грузкианалоги коэффициентов корреляции, показывают степень взаимо­связи соответствующих переменных и факторов: чем больше абсолютная величина факторной нагрузки, тем сильнее связь переменной с фактором, тем больше данная переменная обусловлена действием соответствующего фактора.

 

Фактор – это искусственный статистический показатель, который получается в результате преобразований корреляционной матрицы.

Процедура извлечения факторов называется факторизацией.

Факторные нагрузки (факторные веса) – коэффициенты корреляции каждого фактора с каждой переменной.

Каждый фактор идентифицируется по тем признакам, с которыми он в наибольшей степени связан (наибольшие нагрузки). Идентификация фактора заключается, как правило, в присвоении ему имени обобщающего по смыслу наименования входящих в него переменных.

Общность переменной – это сумма квадратов факторных нагрузок. Она показывает часть дисперсии признака, которая является общей для двух (в данном случае) переменных.

Переменные с большей общностью имеют значительно большую долю дисперсии с одним или несколькими факторами.

Низкая общность означает, что ни один из факторов не имеет совпадающей доли дисперсии с данной переменной. Низкая общность может свидетельствовать о том, например, что переменная измеряет нечто качественно отличающееся от других признаков, включённых в анализ.

Собственные значения фактора – это значимость каждого из факторов.

В нижней строчке приводится доля дисперсии фактора – часть дисперсии в выборке, которая объясняется данным фактором.

Факторный анализ бывает двух видов:

Используется для анализа результатов исследования для того, чтобы сформулировать рабочие гипотезы о причинах обнаруженных связей. Выполняется на ориентировочной стадии работы.

Применяется на более поздних стадиях исследования для проверки гипотез. Когда в рамках какой-либо теории или модели сформулированы чёткие гипотезы, факторы между переменными и факторами достаточно определены, и исследователь может их прямо указать. В этом случае факторный анализ является средством проверки соответствия сформулированной гипотезы полученным эмпирическим данным.

Факторный анализ может выполняться различными методами (о различии методов см. учебник Наследова).

Анализ главных компонент. При использова­нии этого метода общность каждой переменной получается автоматически, путем суммирования квадратов ее нагрузок по всем главным компонентам. Вопрос о приближении восстановленных коэффициентов корреляции к ис­ходным корреляциям не решается. В результате факторная структура иска­жается в сторону преувеличения абсолютных величин факторных нагрузок.

Факторный анализ образов — это метод главных компонент, применяемый к так называемой реду­цированной корреляционной матрице, у которой вместо единиц на главной диагонали располагаются оценки общностей. Общность каждой переменной оценивается предварительно, как квадрат коэффициента множественной корреляции (КМК) этой переменной со всеми остальными. Такая оценка, с точки зрения теоретиков факторного анализа, приводит к более точным ре­зультатам, чем в анализе главных компонент. Но значения общностей недо­оцениваются, что также приводит к искажениям факторной структуры, хотя и меньшим, чем в предыдущем случае.

Метод главных осей позволяет получить более точ­ное решение. На первом шаге общности вычисляются по методу главных ком­понент. На каждом последующем шаге собственные значения и факторные нагрузки вычисляются исходя из предыдущих значений общностей. Оконча­тельное решение получается при выполнении заданного числа итераций или достижении минимальных различий между общностями на данном и преды­дущем шагах.

Метод не взвешенных наименьших квадратов — минимизирует квадраты остатков (разностей) исходной и воспроизведенной корреляционных матриц (вне главной диагонали). Процесс повторяется многократно до тех пор, пока не достигается минимально воз­можная разница между исходными и вычисленными корреляциями при за­данном числе факторов. Метод, по определению, дает минимальные ошибки факторной структуры при фиксированном числе факторов. Реализация ме­тода в компьютерных программах позволяет проверить расхождения между исходными и вычисленными корреляциями. Наличие многочисленных рас­хождений может служить дополнительным аргументом в пользу увеличения числа факторов.

Обобщенный метод наименьших квадратов — отли­чается от предыдущего тем, что для каждой переменной вводятся специаль­ные весовые коэффициенты. Чем больше общность переменной, тем в боль­шей степени она влияет на факторную структуру (имеет больший вес). Это соответствует основному принципу статистического оценивания, по которо­му менее точные наблюдения учитываются в меньшей степени. В этом — ос­новное преимущество этого метода перед остальными.

Метод максимального правдоподобия также направлен на уменьшение разности исходных и вычисленных корреляций между при­знаками. Дополнительно этот метод позволяет получить важный показатель полноты факторизации — статистическую оценку «качества подгонки». Однако следует помнить, что этот критерий, как и остальные формальные критерии, являет­ся дополнительным. Окончательное же решение о числе факторов принима­ется после содержательной интерпретации факторной структуры.

Вряд ли возможно дать общие рекомендации о преимуществе или недо­статке того или иного метода. Можно лишь отметить, что анализ главных ком­понент дает наиболее грубое решение, а метод максимального правдоподо­бия позволяет статистически оценить минимально возможное число факторов для данного набора переменных. По-видимому, в каждом конкретном случае стоит сравнивать результаты применения разных методов и выбирать тот, ко­торый позволяет получить наиболее простую и доступную интерпретации факторную структуру.

 

Основные этапы факторного анализа:




Поделиться с друзьями:


Дата добавления: 2014-12-26; Просмотров: 1501; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.