Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Факторные нагрузки после варимакс-вращения




Матрица корреляций пяти показателей интеллекта

Показатели          
  Счет в уме 1,00 0,88 0,33 0,23 0,42
  Числовые ряды 0,88 1,00 0,32 0,24 0,35
  Осведомленность 0,33 0,32 1,00 0,58 0,58
  Словарный запас 0,23 0,24 0,58 1,00 0,54
  Сходство 0,42 0,35 0,58 0,54 1,00

 

Применив факторный анализ, исследователь выделил два фактора. Основной ре­зультат, который подлежит интерпретации исследователем, — таблица факторных нагрузок после варимакс-вращения (табл. 38).

Таблица 38

Исходные переменные     Факторные нагрузки h2 (общность)    
F1 F2
  0,97 0,20 0,99
  0,86 0,20 0,78
  -0,18 0,76 0,62
  0,09 0,74 0,56
  0,26 0,69 0,55
Собственное значение 1,79 1,70 3,5
Доля дисперсии 0,36 0,34 0,7

 

Не рассматривая пока шаги, при­водящие к этому результату, попытаемся проинтерпретировать полученные данные (интерпретация фактора производится через исход­ные переменные). В нашем примере по фактору 1 (F1) максимальные нагрузки имеют переменные 1 и 2. Следовательно, фактор 1 и определяется этими переменными. Поскольку перемен­ная 1 — счет в уме, а переменная 2 — продолжение числового ряда, то фактору 1 мо­жет быть присвоено название «арифметические способности», как показателю лег­кости оперирования числовым материалом. Точно так же фактору 2 можно присвоить название «вербальные способности», как показателю словесного понимания. Нетруд­но заметить, что переменные, определяющие фактор, сильнее связаны друг с другом, чем с другими переменными (табл. 1). Так, переменные 1 и 2, определяющие фак­тор 1, сильнее связаны друг с другом, чем с переменными 3, 4 и 5. Таким образом, за взаимосвязью пяти исход­ных измерений способностей при помо­щи факторного анализа обнаруживает­ся действие двух латентных переменных (факторов).

Интерпретация факторов — одна из основных задач факторного анализа. Ее решение заключается в идентификации факторов через исходные пере­менные. Эта идентификация и осуществляется по результатам обработки, представленным в табл. 40.

Каждый фактор идентифицируется по тем переменным, с которы­ми он в наибольшей степени связан, то есть по переменным, имеющим по этому фактору наибольшие нагрузки. Идентификация фактора заключается, как правило, в присвоении ему имени, обобщающего по смыслу наименова­ния входящих в него переменных.

Если исследователя интересует только структура измеренных признаков, на этом факторный анализ завершается. Продолжая факторный анализ, ис­следователь далее может вычислить значения факторов для испытуемых, на­пример, с целью их дифференциации по преобладанию арифметических или вербальных способностей.

Выбирая факторный анализ как средство изучения корреляций, исследо­ватель должен отдавать себе отчет в том, что это один из самых сложных и трудоемких методов. Зачастую нет веских оснований предполагать наличие факторов как скрытых причин изучаемых корреляции, и задача заключается лишь в обнаружении группировок тесно связанных переменных. Тогда целе­сообразнее вместо факторного анализа использовать кластерный анализ кор­реляций. Помимо простоты, кластерный анализ обладает еще одним преимуществом: его применение не связано с потерей исходной ин­формации о связях между переменными, что неизбежно при факторном ана­лизе. И уже после выделения групп тесно связанных переменных можно по­пытаться применить факторный анализ для их объяснения.

Итак, можно сформулировать основные задачи факторного анализа:

1. Исследование структуры взаимосвязей переменных. В этом случае каж­дая группировка переменных будет определяться фактором, по которому эти переменные имеют максимальные нагрузки.

2. Идентификация факторов как скрытых (латентных) переменных — при­чин взаимосвязи исходных переменных.

3. Вычисление значений факторов для испытуемых как новых, интегральных переменных. При этом число факторов существенно меньше числа исходных переменных. В этом смысле факторный анализ решает задачу сокращения количества признаков с минимальными потерями исходной информации.

Исходным материалом для факторного анализа является корреляционная матрица. В результате анализа мы получаем таблицу, которая выглядит следующим образом (таблица 39):

Таблица 39




Поделиться с друзьями:


Дата добавления: 2014-12-26; Просмотров: 737; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.