КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Метод хорд
В этом методе нелинейная функция f(x) на отделенном промежутке [ a,b ] заменяется хордой, проходящей через точки (a,f(a))и (b,f(b)) Рис.2.4. Метод хорд. Неподвижен правый конец промежутка b Уравнение хорды: . Найдем точку пересечения хорды с горизонтальной осью. Полагая и , получим . Точку x1 принимаем за новую границу отрезка, где содержится корень. Через эту точку с координатами (x1,f(x1)) и соответствующую границу предыдущего интервала (b,f(b)) опять проводим хорду, находим и т.д., получая последовательность x1,x2,x3,…xn,…, сходящуюся к корню уравнения. Вторая производная сохраняет постоянный знак на . Следовательно, возможны два случая. Если f(b)·f "(b)>0, то хорда имеет правый фиксированный конец, причем последовательность x0,x1,…xn приближается к корню слева. За начальное приближение x0, естественно, берут a ; ; ; .
Рис.2.5. Метод хорд. Неподвижен левый конец промежутка a Если f(a)·f "(a)>0, то хорда имеет левый фиксированный конец, причем последовательность x0,x1,…xn … приближается к корню справа. За начальное приближение x0, берут b ; ; ; . Для оценки точности можно воспользоваться формулой , где -точный корень, - приближенный корень, , на промежутке [ a,b ]. Считаем до тех пор пока, не выполнится условие . Если имеет место неравенство , то счет можно прекратить, когда. Пример 2.4. Найти методом хорд корень уравнения x4-x-1=0
Решение находим, используя пакет Mathcad.
Функция монотонна на промежутках (-∞, 0.63), (0.63, ∞) и меняет на концах промежутков знак. Уравнение имеет два корня. Сузим промежутки отделения корней методом проб, т.е. подстановкой.
Первый корень принадлежит промежутку (-1,-0.5)
Второй корень принадлежит промежутку (1,1.5)
Будем находить корень на промежутке (-1,-0.5)
Вторая производная всюду положительна, функция положительна в точке a = -1, значит, этот конец неподвижен.
так как , множитель нужно учитывать при оценке точности решения,
Нашли корень исходного уравнения с точностью .
Рис. 2.6. Вычисления в Mathcad, реализующие метод хорд для примера 2.4
2.2.3. Метод Ньютона – метод касательных
Пусть - корень уравнения отделен на отрезке , причем и непрерывны и сохраняют определенные знаки на этом же отрезке . Найдя какое-нибудь n-е значение корня (), уточним его по методу Ньютона. Для этого положим , где - считаем малой величиной. Разложим функцию f(x) в ряд Тейлора в окрестности точки x n по степеням h n. Тогда можно записать: Ограничимся двумя членами ряда и так как , то: . Учитывая найденную поправку hn:,получим (n=0,1,2,…). Рис.2.7 Метод касательных. Начальное приближение x0=b По-другому этот метод называется методом касательных. Если в точке провести касательную к функции f(x), то ее пересечение с осью ОХ и будет новым приближением x1 корня уравнения Хорошим начальным приближением является то значение, для которого выполнено неравенство . Погрешность вычислений Счет можно прекратить, когда Теорема 2.2: Если , причем и отличны от нуля и сохраняют определенные знаки при , то, исходя из начального приближения , удовлетворяющего условию , можно вычислить методом Ньютона единственный корень уравнения с любой степенью точности.
Пример 2.5. Найти методом Ньютона корень уравнения x4-x-1 =0,
Нашли корень исходного уравнения -0.7245 с точность 0.00007.
Рис. 2.8. Вычисления в Mathcad, реализующие метод касательных для примера 2.5
Дата добавления: 2014-12-26; Просмотров: 682; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |