Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Упражнения. Общие замечания.Первые две задачи направлены на работу с дискретными случайными величинами, а две последующие – на имитацию непрерывных теоретических




Общие замечания. Первые две задачи направлены на работу с дискретными случайными величинами, а две последующие – на имитацию непрерывных теоретических процессов. Предполагается, что их решение будет осуществлено в программе MS Excel.

Задача 2.1

Моделируемая ситуация. Натуралист-ботаник участвует в полевой экспедиции в степях вокруг Саянских гор. Ему необходимо предельно кратко обобщить ареал произрастания гриба класса Ascomyceta.

Постановка задачи. В результате исследования, проведенного в различных частях ареала произрастания грибов, выяснилось, что там встречается всего 4 подкласса искомых грибов, причём примерно везде в постоянных соотношениях. Результаты фиксации образцов представлены следующим временным рядом: 1, 1, 1, 2, 1, 2, 1, 1, 3, 2, 2, 1, 4, 1, 2, 1, 1, 4, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 2, 2, 1, 4, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 4, 2, 2, 1, 4, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 4, 1, 1, 1, 1, 2, 1, 2, 2, 1, 4, 1, 1, 2, 1, 2, 3, 4, 2, 1, 1, 3, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 2 (цифра – номер подкласса растения). Постройте функции распределения и вероятностей в разрезе частот подклассов гриба Ascomyceta, определите основные характеристики получившегося распределения.

Задача 2.2

Моделируемая ситуация. Летняя спортивная школа готовит легкоатлетов. Исходя из результатов квалификационных зачётов, следует оценить потенциал тренирующейся группы юных спортсменов.

Постановка задачи. При проведении ряда квалификационных зачётов были получены следующие рейтинги спортсменов: 16.43; 8.45; 4.64; 4.93; 8.52; 0.39; 16.81; 16.11; 8.31; 0.65; 0.72; 8.66; 4.64; 8.06; 16.24; 12.0; 4.73; 0.53; 16.93; 12.01; 16.96; 0.49; 12.11; 0.49; 9.00; 16.33; 0.02; 0.81; 4.3; 4.69; 0.50; 0.88; 16.98; 16.09; 8.09; 4.76; 0.14; 8.07; 16.60; 8.29; 0.48; 12.48; 16.69; 0.18; 8.58; 0.22; 0;28; 16.26; 0.21; 16.89; 16.90; 16.04; 12.83; 16.61; 16.96; 8.51; 8.27; 0.18; 16.25; 4.64; 4.83; 4.77; 12.99; 0.06; 0.51; 4.39; 0.44; 16.29; 0.86; 4.52; 16.16; 16.91; 0.17; 4.68; 0; 0.04; 0.07; 13.00; 0.72; 4.13; 16.70; 16.73; 0.58; 0.85; 4.39; 0.03; 12.23; 4.;5; 16.16; 0.18; 4.35; 16.94; 4.29; 16.53; 4.31; 0;03; 16.22; 16.37; 16.77; 12.95; 12.11; 16.62; 8.98; 16.35; 4.43; 8.60; 0.20; 12.90; 0.03; 12.21; 12.23; 0;77; 0.59; 0.54; 0.70; 4.07; 16.42; 0.60; 4.54; 4.27; 4.03; 16.68; 16.71; 4.31; 4.29; 16.83; 0.40; 0.81; 4.28; 0.81; 0.94. Постройте эмпирическую функцию вероятностей, предварительно выполнив переход от исходного ряда к интервальному ряду. Получите формулу, позволяющую генерировать случайную величину для полученного закона распределения.

Рекомендации: Для генерации случайной величины, подчиненной дискретной функции вероятностей, используйте интервальные диапазоны (возьмите длину диапазона, равную 4–5 баллам).

Задача 2.3

Моделируемая ситуация. В магазине осуществляется покупка товаров. Получите функцию плотности для данного процесса.

Постановка задачи. Известно, что очередной покупатель обслуживается на кассе за период времени, подчинённый показательному закону распределения с параметром 8 (в секундах). Постройте ряд псевдослучайных величин, подчинённый этому закону распределения на примере 100 покупок. Рассчитайте основные показатели получившегося ряда.

Задача 2.4

Моделируемая ситуация. Автоматизированный конвейер на заводе осуществляет розлив патоки в форму. Требуется осуществить оценку объёма расходуемой массы продукта для партии в 200 изделий.

Постановка задачи. Известно, что объём очередного выливания растопленной патоки из ковша есть случайная величина, имеющая матожидание объёма заполнения формы, равное 120 граммам, и отклонение (дисперсию) – 15 граммам. В какую стоимость обойдётся общий объём израсходованной патоки, если её килограмм стоит 213 руб.?




Поделиться с друзьями:


Дата добавления: 2014-12-26; Просмотров: 381; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.