Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Определителем (детерминантом) квадратной матрицы n-го порядка называется число 3 страница




 

Если и , то неравенство, означающее выпуклость функции , превращается в такое:

при всех .

Дадим теперь определение выпуклой функции многих переменных.

Определение1 Пусть - выпуклое множество, на котором задана функция . Функция называется выпуклой (или выпуклой книзу) на множестве , если для любых двух точек функция , служащая ограничением функции на отрезок, соединяющий точки и , является выпуклой (книзу) функцией одного переменного (здесь, как и выше, ).

 

 

Функция называется вогнутой (или выпуклой кверху) в , если функция вогнута.

Таким образом, функция вогнута в том и только том случае, когда функция выпукла.

Выпуклость функции в означает, что для любого отрезка с концами и параметризация этого отрезка в виде задаёт композицию , являющуюся выпуклой функцией параметра . Ввиду выпуклости области , любые точки и отрезка лежат в , и их снова можно взять в качестве концов отрезка. Поэтому для выпуклости функции в области необходимо и достаточно, чтобы неравенство

выполнялось при всех и .

Если при этом при всех и выполняется строгое неравенство

то функцию будем называть строго выпуклой в .

Наконец, функция называется строго вогнутой, если функция строго выпукла; это означает выполнение строгого неравенства

при всех и .

Геометрически (в случае ) строгая выпуклость означает, что для любой хорды графика точки дуги графика с теми же концами, что у хорды, лежащие в вертикальном сечении, проходящем через эту хорду, располагаются ниже точек хорды. Строгая вогнутость означает, что в любом вертикальном сечении график проходит выше любого отрезка, соединяющего две точки графика.

 

Заметим, что понятия выпуклой и вогнутой функций (а также строго выпуклой и строго вогнутой функций) в области определены только для выпуклых областей .

Дадим теперь такое алгебраическое определение.

Определение: Пусть дана квадратная матрица размера . Она называется неотрицательно определённой, если для любого вектора-столбца (точкой обозначено скалярное произведение в ). Матрица называется положительно определённой, если для всех .

Заметим, что выражение можно записать в виде , где - это матрица-строка, равная транспонированному столбцу . Вообще, верхний левый индекс мы будем применять для обозначения транспонированной матрицы.

Определение Квадратная матрица называется симметричной, если при всех имеет место равенство , то есть если .

У симметричной матрицы равны друг другу элементы, расположенные симметрично друг другу относительно главной диагонали матрицы.

Теорема: Пусть - симметричная неотрицательно определённая матрица размера . Тогда квадратичная функция (она же называется квадратичной формой, заданной матрицей )

является выпуклой функцией (во всем пространстве, то есть при ).

Если же симметричная матрица - положительно определённая, то заданная ею квадратичная форма является строго выпуклой.

Доказательство. Пусть и - две произвольные точки и , где , - точка отрезка, соединяющего с .

Предположим, что матрица неотрицательно определена. Элементарные преобразования позволяют записать в виде

 
 

 

Поскольку матрица неотрицательно определена, имеет место неравенство

откуда сразу следует, что

а это неравенство означает выпуклость функции .

Доказательство строгой выпуклости в случае положительно определённой матрицы проводится с помощью очевидных изменений приведённого доказательства.

Другой пример выпуклой функции даёт линейная функция:

Пример: Линейная функция

где - постоянные, является выпуклой функцией во всём пространстве (но не является строго выпуклой функцией). Действительно, как легко проверить, при всех и имеем

Поскольку функция , очевидно, также линейна, линейная функция является одновременно и вогнутой (но не строго вогнутой).

Если о некоторых функциях известно, что они выпуклы в области , то из них можно сконструировать другие выпуклые функции, используя следующие свойства выпуклых функций.

Теорема: Пусть - выпуклая область и функции и выпуклы в . Тогда сумма этих функций также выпукла в .

Доказательство. Пусть и , где . Тогда

 
 


что и означает выпуклость функции .

Практическая ценность этого утверждения в том, что при поиске наименьшего значения выпуклой функции в области достаточно найти любую точку локального минимума; во всех остальных точках локального минимума (если они существуют) значение функции будет точно такое же. Для невыпуклых функций это, конечно, не так, как видно на следующем рисунке:

 

 




Поделиться с друзьями:


Дата добавления: 2014-12-27; Просмотров: 368; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.