Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Теорема 26.2. +28.5. Пусть в окрестности точки существуют и непрерывны , … и пусть существует . Тогда при




◄ Обозначим , и рассмотрим отношение . По правилу Лопиталя(теореме 28.1), применённому раз, имеем

.Из определения следует, что . Поэтому

.Это означает, что = , что и требовалось доказать.

 

Вопрос 27. РАЗЛОЖЕНИЯ ФУНКЦИЙ ex, sinx, cosx, lnx, (1+x)µ

 

Применим доказанные формулы Тейлора к функциям, перечисленным выше.

1) Так как , для всех выполняется равенство

.Следовательно, все эти производные равны 1 при x=0.

Поэтому , где ξ – некоторая точка между 0 и x. Другая запись для точки ξ: ξ = θ x, 0 < q <1. Это – разложение ex с остаточным членом в форме Лагранжа.

Формула Тейлора с остаточным членом в форме Пеано для ex принимает вид
, .

 

2)Перейдём к функциям sinx, cosx:

, , , и т.д.

Эти равенства означают, что для любого . Поэтому имеет место формула , которую легко проверить для n=0,1,2,3, а для остальных n она верна ввиду установленного равенства .

Поэтому при x=0 имеем:
производная порядка 4k равна ;
производная порядка 4k+1 равна ;
производная порядка 4k+2 равна ;
производная порядка 4k+2 равна .

Следовательно,
, где ξ лежит между 0 и x.
Здесь – небольшая хитрость. Мы разложили функцию до членов степени 2n+2, что позволило сделать погрешность меньшей. Конечно, член выписывать не надо, он равен 0, а здесь он был помещён только для разъяснения вышеупомянутой «хитрости». Итак .

Аналогично,
и

Разложения для sinx и cosx по формуле Тейлора с остаточным членом в форме Пеано имеют вид:

, x→0

, x→0

3) Перейдём к функции . Её последовательные производные равны:

,

и т.д.

Вычисленная при х=0, производная порядка k равна

Поэтому

,

где ξ – некоторая точка между 0 и х.

Разложение с остаточным членом в форме Пеано имеет вид:

4) Наконец, вычислим последовательные производные функции :

, , , .

Вычисленная в точке , производная порядка равна .

Поэтому формула Тейлора с остаточным членом в форме Лагранжа имеет вид:

,

где - между и . Это так называемое биноминальное разложение с остаточным членом в форме Лагранжа. Та же формула с остаточным членом в форме Пеано имеет вид:

, .

В качестве примера применения формулы Тейлора рассмотрим задачу нахождения с точностью до 0,001.

Сначала подготовим ее к применению формулы Тейлора. Для этого, зная, что , перепишем вычисляемую величину в виде .

Используем биноминальное разложение при

, .

Число членов разложения выберем, исходя из заданной точности. Для этого найдем такое, чтобы:

(1)

(тогда при умножении на стоящий впереди коэффициент 2 получаем требуемую точность 0,001).

Очевидно, что:

;

Далее, - между и , поэтому и ,

поэтому

Итак, абсолютная величина левой части неравенства (1) не больше, чем

. (2)

Поэтому если число (2) окажется меньше, чем 0,0005, то и остаточный член формулы будет меньше 0,0005 и требуемая точность будет достигнута.

Сразу ясно, что при

Число .

Поэтому требуемую точность для приближенной величины даёт приближённая формула:

.

 

 




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 365; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.