КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Пример 3.1
Примером может служить задача о траектории. Предположим, что снаряд выпускается с начальной скоростью V 0 под заданным углом наклона Q0 к поверхности. Как видно из рис. 3.2 функции x (t) и y (t) обозначают координаты x и у снаряда в момент времени t, а функции и определяют его скорость V (t). Расстояние x k, на котором упадет снаряд, зависит от целого ряда факторов: массы снаряда, начальной скорости, гравитационных сил и т.д. Математическая модель этой задачи выводится из второго закона Ньютона: (3.1) где m - масса снаряда; F - результирующая действующих на снаряд сил. На снаряд действуют две силы: 1) cила сопротивления воздуха (3.2) где C - коэффициент сопротивления; ρ - плотность воздуха; S - поперечное сечение снаряда; 2) сила гравитации F 2= - mg, (3.3) где g - ускорение свободного падения. Чтобы записать уравнение (3.1) в переменных x и y, заметим, что сила сопротивления F 1действует вдоль оси снаряда, а сила гравитации F 2 только в вертикальном направлении. Поэтому уравнение (3.1) можно записать покоординатно следующим образом: (3.4) Используя (3.2), (3.3) и меняя порядок членов, перепишем уравнения (3.4) в виде: (3.5) Для численного решения необходимо преобразовать два уравнения второго порядка (3.5) в систему четырех уравнений первого порядка. Дифференцируя соотношение (3.6) Имеем (3.7) Подставляя теперь выражения (3.7) в уравнение (3.5) и разрешая последние относительно и , получаем (3.8) Уравнения (3.6) вместе с (3.8) составляют систему четырех нелинейных уравнений первого порядка относительно функций x, y, V, θ. Это связанная система нелинейных дифференциальных уравнений, явное решение которых невозможно и возникает необходимость в приближенном численном решении на ЭВМ. Решение системы (3.6), (3.8) должно удовлетворять четырем необходимым начальным условиям. Считаем, что снаряд выпускается в момент времени t = 0, так что (x0) = 0, (y0) = 0. Другие два начальных условия даются соотношениями Следовательно, в данном случае рассматривается задача Коши. При заданных характеристиках снаряда и заданном V 0 имеется только один свободный параметр – угол стрельбы Q0. Его изменение будет, очевидно, приводить к изменению траектории.
Дата добавления: 2015-04-24; Просмотров: 346; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |