Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Группа, свойства группы




Определение 7. Непустое множество G с заданной алгебраической операцией называется группой, если

1) – ассоциативная операция;

2) в G нейтральный элемент ;

3) симметричный элемент из

Если – коммутативная операция, то группа называется коммутативной или абелевой.

Операция, относительно которой G − группа, называется групповой операцией. Если групповая операция − умножение, то группа называется мультипликативной, если – сложение, то G – аддитивная группа.

Примеры.

1. (N,+) ­– коммутативная полугруппа без нейтрального элемента.

2. (N, ) ­– коммутативная полугруппа с нейтральным элементом.

3. (Z, +) – аддитивная абелева группа.

4. (Q, +) – аддитивная абелева группа.

5. (R, +) – аддитивная абелева группа.

6. (R, ) – абелева полугруппа с нейтральным элементом.

7. (R ) – мультипликативная абелева группа.

8. – абелева группа: .

9. Множество векторов на плоскости или в пространстве относительно операции сложения образуют абелеву группу.




Поделиться с друзьями:


Дата добавления: 2015-04-25; Просмотров: 582; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.