КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Примеры колец. 1. (Z; +, ), (Q; +, ), (R; +, ) образуют коммутативные кольца с единицей относительно обычных операций сложен
1. (Z; +, ), (Q; +, ), (R; +, ) образуют коммутативные кольца с единицей относительно обычных операций сложения и умножения. 2. Множество {0}, содержащее лишь одно число 0, образует кольцо, называемое нулевым кольцом. 3. Множество непрерывных на отрезке функций с операциями + и , определенными следующим образом: , , образует коммутативное кольцо с единицей. 4. Множество V3 всех векторов пространства относительно операций сложения векторов и векторного произведения векторов не образует кольцо. 5. Рассмотрим пространство битовых строк (последовательностей длины , состоящих из нулей и единиц), относительно операций (исключающее «или») и (логическое умножение), которые задаются таблицами:
Например, (1010) (0110)=(1100); (1010) (0110)=(0010). Операции и − алгебраические, нейтральный элемент – нулевая битовая строка (0…0). Для каждой битовой строки противоположным элементом является эта же битовая строка. Доказательство коммутативности, ассоциативности операций и и дистрибутивность логического умножения относительно операции сводятся к доказательству этих свойств для битовых строк длиной 1, которое проводится прямыми вычислениями. Таким образом, пространство битовых строк с операциями , является кольцом, которое обозначается . Это кольцо является коммутативным кольцом с единицей. Так как (;+) абелева группа, то противоположный элемент . Поэтому в К можно ввести операцию вычитания: .В силу свойства группы единственное решение уравнения .
Дата добавления: 2015-04-25; Просмотров: 504; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |