Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Динамические измерения и динамические погрешности




2.10.1. Характеристики динамических измерений

2.10.2. Динамические измерения и погрешности детерминированных

линейных измерительных цепей

2.10.3. Динамические погрешности случайных процессов

2.10.1. Характеристики динамических измерений

Измерение называют динамическим (в динамическом режиме), если нельзя пренебречь изменением величины во времени. Например, измерение мгновенного значения переменного тока или напряжения. С другой стороны, СИ, как правило, обладают инерционностью и не могут мгновенно реагировать на изменение входного сигнала. Поэтому при измерении изменяющегося во времени сигнала х (t) всегда возникает составляющая погрешности, обусловленная инерционными (динамическими) свойствами СИ.

Эти свойства выражают с помощью динамических характеристик, однозначно устанавливающих отклик СИ на изменение входного воздействия. В качестве таких характеристик используют передаточную функцию; комплексный коэффициент передачи — амплитудно-частотную характеристику (АЧХ); комплексную чувствительность — фазочастотную характеристику (ФЧХ); переходную функцию — реакцию на единичный скачок; импульсную (весовую) функцию — реакцию на единичный импульс [10; 30; 55].
Указанные характеристики взаимосвязаны, и по одной из них можно найти все остальные. Методы их экспериментального определения также широко освещены в литературе по автоматическому регулированию.

При решении задач динамических измерений необходимо подобрать аналитические выражения для аппроксимации найденных или заданных динамических характеристик; найти аналитические выражения (с помощью специальных функций; полигонов, рядов и др.) для входных и выходных сигналов; определить собственно динамические погрешности; найти входной сигнал (например, состояния ТС) по зафиксированному выходному — восстановление сигнала.

В общем случае динамическая погрешность в передаче сигнала х (t), являющегося функцией времени, определяется разностью между действительным выходным сигналом y (t) в динамическом режиме и выходным сигналом y ст= Sx (t) в статическом режиме при отсутствии инерционных свойств СИ, т. е.

Dдин = y (t) - Sx (t) = y (t) - y ст, (2.29)

где S — чувствительность СИ.

Динамической погрешностью является не только погрешность, оцениваемая по формуле (2.29), но, например, и погрешность при идеальной передаче формы сигнала, сдвинутого во времени по фазе на t-фазовую динамическую погрешность:

Dдин = y (t + t) - y ст.  

Динамические погрешности могут быть определены только расчетно-экспериментальным путем. Эталонов и образцовых СИ в области динамических измерений нет.

Учитывая, что СИ входит в измерительную цепь наряду с другими звеньями (датчиками, усилителями, преобразователями, трансформаторами и т. д.), каждый из которых тоже обладает своими динамическими свойствами, в целом следует говорить о некотором аналоге измерительной цепи — измерительном преобразователе (ИП) с известными (заданными) динамическими характеристиками.

Для описания динамических свойств ИП необходимо задать такие параметры, которые позволили бы для любого входного сигнала x (t) определить выходной y (t) сигнал, а также решить обратную задачу (восстановление входного сигнала, т. е. оценки технического состояния ТС) с учетом дестабилизирующих факторов (помехи, внешние влияния, неинформативные параметры и т. п.). Связь между входным и выходным сигналами осуществляется через оператор В данного ИП:

y (t) = Вx (t). (2.30)

Оператор В отражает характер отклика ИП на входной сигнал. Математически оператор В может быть линейным и нелинейным, дифференцируемым в обыкновенных и частных производных, описан дифференциальными и интегральными уравнениями, рядами и функциями.

Для определения оператора во временной области используют переходную или импульсную функции, а в частотной — передаточную.

Прежде всего рассмотрим, какие сигналы подлежат анализу при динамических измерениях. В общем случае здесь используются детерминированные и случайные (стохастические) модели сигналов, хотя реально они смешанные.

Детерминированные модели бывают периодическими и непериодическими. И те и другие могут быть непрерывными во времени или представлены в виде последовательности дискретных импульсов. Из всех возможных видов непрерывных непериодических сигналов наибольшее распространение для описания динамических свойств получили финитные, т. е. отличные от нуля лишь на конечном интервале времени, и модели с ненулевым установившимся значением. Эти сигналы описываются либо с помощью интеграла Фурье, либо изображением по Лапласу.

Непрерывные периодические сигналы могут быть выражены рядом Фурье, изображениями по Лапласу, полиномами Чебышева, Лежандра и Лагерра.

Случайные сигналы можно представить в виде некоторой случайной функции времени (случайный процесс) либо дискретной функцией времени (случайными последовательностями). Известно, что случайные процессы могут быть нестационарными и стационарными, а последние — эргодическими и неэргодическими. В зависимости от вида случайного сигнала подбирается и соответствующий математический аппарат. При этом случайный процесс может быть описан: совокупностью ограниченных во времени реализаци й; совокупностью функций распределения; автокорреляционной функцией; разложением по системе ортонормированных функций.

Для линейных моделей оператора В используются интегральные уравнения Фредгольма, Вольтерра, дифференциальные уравнения, разложения в ряды, а для нелинейных — операторы Урысона, Хаммерштейна, Лихтенштейна — Ляпунова.




Поделиться с друзьями:


Дата добавления: 2015-04-30; Просмотров: 2072; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.