КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Пример 5
Пример 4. Для получения горизонтального проложения линии на плане определены координаты концов этой линии, что дало результаты , и , . Эти величины получены со СКП и , и . Необходимо вычислить горизонтальное проложение между этими точками и его СКП. Решение Горизонтальное проложение между точками определяют по формуле: Применим формулу (3.6) и вычислим частные производные по всем координатам: . Аналогично: . Тогда СКП горизонтального проложения определяется формулой . При условии, что , будем иметь: , или Для получения дирекционного угла направления между точками на плане определены координаты концов отрезка, соединяющие эти точки (, ; , ). Эти величины получены с СКП и , и . Необходимо вычислить дирекционный угол направления и его СКП. Решение. Дирекционный угол направления вычисляют по формуле: , где , , , – координаты концов отрезка. Согласно (3.6) необходимо вычислить частные производные по всем координатам: . Окончательно:
Аналогично найдем частные производные по остальным координатам: . .
. . СКП дирекционного угла определяется формулой , где - радианная мера угла в секундах, равная 206265". При условии, что , будем иметь: .
Дата добавления: 2015-03-31; Просмотров: 472; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |