КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Проблема трансплантации органов и тканей. Ауто- алло- и гетеротрансплантация. Трансплантация жизненно важных
Понятие о гомеостазе. Общие закономерности гомеостаза живых систем. Генетические, структурные, кибернетические основы гомеостатических реакций организма. Роль эндокринной и нервной систем в обеспечении гомеостаза и адаптивных изменений. Стресс. Общий адаптационный синдром. Биологическое и медицинское значение проблемы регенерации. Проявление регенерационной способности у человека. Регенерация патологически измененных органов и обратимость патологических изменений. Регенерационная терапия. Патологическая регенерация. При этом происходит разрастание тканей, не идентичных здоровым тканям в этом органе. Например, на месте глубоких ожогов может быть массивное разрастание плотной соединительной рубцовой ткани, а нормальная структура кожи не восстанавливается. После перелома кости при отсутствии совмещения обломков ее нормальное строение не восстанавливается, а разрастается хрящевая ткань, образуя ложный сустав. Репаративная регенерация в различных тканях проявляется по-разному. В соединительной ткани, коже, слизистых оболочках после повреждения происходит интенсивное размножение клеток и восстановление ткани, подобной утраченной. Это — полная регенерация (реституция). В случае неполного восстановления ткани говорят о субституции. При повреждении покровов восстанавливается как соединительно-тканная часть (дерма), так и эпителий (эпидермис). Однако темп размножения клеток рыхлой соединительной ткани более высокий, поэтому они частично заполняют дефект, образуются волокна и после больших повреждений на их месте формируется рубцовая ткань. Чтобы предотвратить это, применяют пересадку кожи, взятой у того же больного со здоровых участков тела или у другого человека. Хорошие способности к регенерации имеет костная ткань. Регенерация хрящевой ткани осуществляется за счет камбиальных элементов надхрящницы. Однако новооб-разование и полное восстановление, в отличие от кости, может происходить только при небольших дефектах. Нервные клетки вскоре после рождения теряют способность делиться митозом; способностью к регенерации обладают периферические нервы — отростки нервных волокон. При ранении периферический отрезок подвергается дегенерации, но сохраняются клетки его оболочки, они размножаются и образуют русло, по которому растет центральный отрезок. Поэтому хирурги сшивают рассеченные нервы. Если концы перерезанного нерва не соединить, то на месте перерыва образуется рубец с вросшими в него беспорядочно располагающимися нервными отростками. Это не приводит к восстановлению нервного волокна, но рубцовая ткань приобретает болезненную чувствительность. Это также патологическая регенерация. Она характеризуется часто избыточным разрастанием тканей или переходом одного типа ткани в другой (метаплазия). Патологическая регенерация может быть вызвана и нарушениями гормональной регуляции, например разрастанием хрящевой ткани при акромегалии. После повреждения исчерченных (поперечно-полосатых) мышечных волокон на месте травмы развивается соединительная ткань и восстановления непрерывности волокон не происходит. После глубоких ожогов развивается плотная соединительная рубцовая ткань — неполная компенсация.
Процесс регенерации происходит во многих внутренних органах после различных патологических процессов (воспалительные процессы вирусного и бактериального происхождения) а также после каких-либо эндогенных нарушений. Известно, что мышечная ткань сердца очень чувствительна к недостатку кислорода. При нарушении кровоснабжения какого-либо участка миокарда (а это бывает в результате спазма мелиой артерии или закрытия ее просвета образовавшимся тромбом) в мышечных волокнах сравнительно быстро появляются вначале микроскопические мелкоочаговые участки распада миофибрилл, а затем и более крупные некротические очаги (инфаркт). В этом случае после фазы лейкоцитарной реакции (по типу фагоцитоза) происходит размножение клеток соединительной ткани, которая как бы замещает дефект, закрывает его, происходит рубцевание. Одновременно в оставшихся неповрежденными мышечных волокнах начинаются процессы регенерации по типу гипертрофии — увеличение количества саркоплазмы, миофибрилл и ядер. Строго говоря, в данном случае регенерация миокарда является атипичной, так как в этом месте, где раньше была мышечная ткань, развивается соединительно-тканный рубец. Однако в результате происходит более или менее полная компенсация, степень ее зависит от обширности поражения, применяемого лечения и от общего состояния организма. Основой регенерации являются мо-лекулярно-генетические и внутриклеточные механизмы: редупликация ДНК, синтез белка, накопление АТФ, митоз. Изучение процесса регенерации привело к установлению факта, что регенерирующие ткани в известной степени приближаются к эмбриональным. В обоих случаях клетки малодифференцированы, имеется и биохимическое сходство. Эти изменения клеток регенерата в сторону, близкую к эмбриональным, можно объяснить следующим образом. Каждая соматическая клетка имеет полный набор генов. В дифференцированных клетках разных тканей активны определенные гены, программирующие синтез специфических белков, все остальные гены репрессированны, неактивны. При регенерации прекращается синтез специфических белков (дедифференцировка). По-видимому, это связано с тем, что происходит активизация тех генов, которые были активны в эмбриональном периоде.
Понятие о гемостазе. Одно из основных свойств всего живого — способность сохранять относительное динамическое постоянство внутренней среды. Это свойство получило название гомеостазп (гр. homoios — равный, stasis — состояние). Гомеостаз выражается в относительном постоянстве химического состава, осмотического давления, устойчивости основных физиологических функций в организмах растений, животных,, человека. Гомеостаз каждого индивидуума специфичен и обусловлен его генотипом. Регуляторные гомеостатические механизмы функционируют на клеточном, органном, организменном и над-организменном уровнях. Таким образом, понятие гомеостаза не связано со стабильностью процессов. В ответ на действие внешних факторов происходит некоторое изменение физиологических показателей, а включение регуляторных систем обеспечивает поддержание относительного постоянства внутренней среды. Способность к поддержанию постоянства внутренней среды представляет собой свойство, выработавшееся в процессе эволюции и наследственно закрепленное. Основные компоненты гомеостаза. Клеточный и молекулярно-генетический уровни. Клетка является сложной биологической системой, которой присуща саморегуляция. Установление гомеостаза клеточной среды обеспечивается мембранными системами, с которыми связаны биоэнергетические процессы и регулирование транспорта веществ в клетку и из нее. В клетке непрерывно идут процессы изменения и восстановления органоидов. Это происходит и в обычных условиях среды, но особенно интенсивно при дгйствии различных повреждающих факторов (изменение температуры, гипоксия, недостаток питательных веществ). В основе реакций, осуществляемых в клетке на ультраструктурном уровне, лежат генетические механизмы гомеостаза. Важнейшее свойство живого — самовоспроизведение — основано на процессе редупликации ДНК. Сам механизм этого процесса, при котором новая нить ДНК строится строго комплементарно около каждой из составляющих молекул двух старых нитей, является оптимальным для точной передачи информации. Точность этого процесса очень высока, но все же, хотя и очень редко, происходят ошибки при редупликации. Нарушение структуры молекулы ДНК может происходить и в ее пепвмчных цепях вне связи с редупликацией под воздействием эндогенных и экзогенных химических соединений, под влиянием физических факторов. В большинстве случаев происходит восстановление генома клетки, исправление повреждения посредством системы репарирующих ферментов. Репарация играет важнейшую роль в восстановлении структуры генетического материала и сохранении нормальной жизнеспособности клетки. При повреждении механизмов репарации происходит нарушение гомеостаза как на клеточном, так и на органиэменном уровнях. Важным механизмом сохранения гомеостаза является диплоидное состояние соматических клеток у эукариот. Диплоидные клетки отличаются большей стабильностью функционирования, так как наличие у них двух генетических программ повышает надежность генотипа. Большинство мутаций, оказывающих часто неблагоприятное действие, являются рецессивными. Наличие у гетерозиготной особи доминантного ал деля обеспечивает либо полное, либо частичное подавление в фенотипе рецессивной мутации. Стабилизация сложной системы генотипа обеспечивается и явлениями полимерии, а также другими видами взаимодействия генов. Большую роль в процессах гомеостаза играют регуляторные гены, контролирующие активность оперонов.
У прокариот, имеющих более примитивную организацию генотипа, наблюдается меньшая автономность организмов от колебания внешней среды и более низкая стабильность самого генетического аппарата. Общие закономерности гомеостаза. Способность сохранять гомеостаз — одно из важнейших свойств живой системы, находящейся в состоянии динамического равновесия с условиями внешней среды. Способность к поддержанию гомеостаза неодинакова у различных видов. По мере усложнения организмов эта способность прогрессирует, делая их в большей степени независимыми от колебаний внешних условий. Особенно это проявляется у высших животных и человека, имеющих сложные нервные, эндокринные и иммунные механизмы регуляции. Влияние среды на организм человека в основном является не прямым, а опосредованным, благодаря созданию им искусственной среды, успехам техники и цивилизации. Молекулярно-генетический уровень гомеостаза обеспечивается процессами редупликации ДНК, репарации. Надежность генетического аппарата эука-риот обусловлена наличием двух геномов в каждой соматической клетке. На уровне клетки происходит восстановление ее мембран, компенсаторное увеличение ряда органоидов при необходимости повышения функции (увеличение количества митохондрий, рибосом). Контроль за генетическим постоянством осуществляется иммунной системой. Эта система состоит из анатомически разобщенных органов, представляющих функциональное единство. Свойство иммунной защиты достигло высшего развития у птиц и млекопитающих. В системных механизмах гомеостаза действует кибернетический принцип отрицательной обратной связи: при любом возмущающем воздействии происходит включение нервных и эндокринных механизмов, которые тесно взаимосвязаны. Нормализация физиологических показателей осуществляется на основе свойства раздражимости. У более высоко организованных животных это усложняется, дополняется сложными поведенческими реакциями, включающими инстинкты, условно-рефлекторную и элементарную рассудочную деятельность, а у человека абстрактное мышление — качественно новое явление, положившее начало социальной эволюции, где действуют другие законы. органов. Тканевая несовместимость и пути ее преодоления. Искусственные органы. Трансплантация. Ауто-, алло- и ксенотрансплантация. Трансплантацией (лат. transplantatio — пересадка) называется пересадка или приживление органов и тканей. Пересаживаемый участок органа называется трансплантатом. Организм, от которого берут ткань для пересадки, является донором; организм, которому пересаживают трансплантат,— реципиентом. Различают аутотрансплантацию, когда пересадка осуществляется на другую часть тела того же организма, аллотрансплантацию, когда производят пересадку от одной особи другой, принадлежащей тому же виду, и ксе-нотрансплантацию, когда донор и реципиент относятся к разным видам. Огромный экспериментальный и клинический материал показал, что успех трансплантации зависит от иммунологических реакций организма. Ауто-трансплантации происходят наиболее успешно, так как белки (антигены) трансплантата не отличаются от белков реципиента. Иммунологическая реакция не возникает, и возможно истинное приживление. При аллотрансплан-тациях донор и реципиент, как правило, различаются по антигенам. В опытах на гидрах и червях аллотрансплантации удаются, так как иммунологические реакции у них выражены слабо. Однако у высших животных и человека обычно не наблюдается длительное приживление аллотрансплантатов. Исключение составляют однояйцовые близнецы, генотип которых, а следовательно, и белковый состав одинаковы. Ксенотрансплантация удается у некоторых беспозвоночных, но у высших животных трансплантаты от особей других видов рассасываются. Трансплантация в медицинской практике. В тех случаях, когда орган не может регенерировать, но он необходим, остается один метод — заменить его таким же естественным или искусственным органом. При пластических операциях, проводимых с целью восстановления формы и функции какого-либо органа или деформированной поверхности тела, распространена пересадка кожи, хряща, мышц, сухожилий, кровеносных сосудов, нервов, сальника. Значительную часть пластических операций составляют косметические, направленные на восстановление деформированных частей лица. При пластических операциях пользуются преимущественно аутотрансплантацией. Пересадка роговицы проходит без осложнений, которые сопровождают пересадку других органов, так как роговица не содержит кровеносных капилляров и, следовательно, в нее не попадают клетки иммунной системы крови. Проблема тканевой несовместимости. Успехи трансплантологии. Поскольку абсолютно точно подобрать донора и реципиента по всем антигенгм невозможно, возникает проблема подавления иммунной реакции отторжения. Большое значение в этом имеет явление иммунологической толерантности (лат. tolerantia — терпимость) к чужеродным клеткам. Это явление было открыто на разных организмах независимо друг от друга чешским эмбриологом М. Гашеком (1953) и английским зоологом П. Медаваром (1953). М. Гашек произвел опыт по эмбриональному парабиозу у двух цыплят, различающихся по антигенам. В результате у обеих птиц выработалась толерантность: при последующем введении им эритроцитов друг от друга не происходило выработки антител, не отторгались и пересаженные от партнера кожные трансплантаты.
Иммунная система, направленная против любых генетически чужеродных веществ и клеток, защищает организм от микробов и вирусов. Однако это свойство, выработанное в процессе длительной эволюции, обращается против интересов человека в случае пересадки органов и тканей. В этом случае, а также при аутоиммунных заболеваниях, перед учеными встала задача подавления иммунитета — иммунодепрес-сии. Это достигается различными способами: подавлением активности иммунной системы, облучением, введением специальной антилимфатической сыворотки, гормонов коры надпочечников. Применяют также различные химические препараты — антидепрессанты (имуран). Уже при первой операции сердца пациенту было назначено облучение и сильнодействующие химические и гормональные препараты для предотвращения отторжения сердца. Иммунитет удалось подавить; сердце не отторгалось, но одновременно был подавлен не только трансплантационный иммунитет, но и тот, который защищает организм от микробов, и больной погиб от воспаления легких. Искусственные органы. Трансплантация не может полностью решить проблему замены нефункциони-' рующих или утраченных органов человека. В последние десятилетия стало развиваться новое направление в заместительной хирургии — применение искусственных органов. Это технические устройства, предназначенные для временной или постоянной замены функции того или иного органа человека. Примером имплантируемых органов могут служить искусственные клапаны сердца, которыми заменяют пораженные; применяют трансплантацию протезов крупных сосудов, сделанных из тефлона или других синтетических материалов. Жизнь многих людей с тяжелыми нарушениями ритмической деятельности сердца удается спасти, имплантируя миниатюрные электрокардиостимуляторы. Созданы протезы некоторых суставов, действующий от биотоков пациента протез руки. Сделана первая попытка замены сердца человека искусственным; хотя сам аппарат находится в теле человека на месте сердца, но источник его энергоснабжения — довольно массивная конструкция — находится вне тела человека, с которым соединяется специальными приводами. Проблема полностью имплантированного (включая источник энергии) сердца требует еще большой исследовательской работы и новых технических решений.
Дата добавления: 2015-04-24; Просмотров: 7264; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |