КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Жизнь тканей и органов вне организма. Значение метода культуры тканей в биологии и медицине. Клиническая и
Биологические ритмы. Классификация биоритмов. Мультиосцилляторная модель регуляции биологических ритмов. Медицинское значение хронобиологии. Принципы хронотерапии. Биологические ритмы. В эволюции выработалась способность организмов ориентироваться во времени, которая позволяет согласовывать скорость и направление главных физиологических процессов с закономерными и прежде всего циклическими изменениями условий обитания. Механизмы, лежащие в основе указанной способности, объединяют под общим термином «биологические часы». Внешним проявлением функционирования таких часов служат ритмические колебания функций организма — биологические ритмы. Область биологии, изучающая закономерности временной организации живых систем, называется хронобиологией. Циклические изменения характеризуют различные процессы на клеточном, тканевом, органном и организменном структурных уровнях. Так, с определенной периодичностью изменяется содержание гликогена в клетках печени, количество клеток, редуплицирующих ДНК или делящихся митозом, происходит вылет имаго из куколок у плодовых мух или свечение одноклеточной водоросли Оопуаи1ах, обусловливающее свечение морской воды. Многочисленны примеры таких изменений у растений: поднимание и опускание листьев или движение лепестков в зависимости от времени суток, опорожнение спор из спорангиев у грибов и водорослей. Биологические ритмы различаются продолжительностью цикла. Околочасовые ритмы характеризуют временную организацию некоторых внутриклеточных метаболических процессов, например синтез и выделение белкового секрета клетками некоторых желез. Их изучение начато сравнительно недавно. Изменения растений и животных в связи со сменой времен года, издавна привлекавшие внимание людей, являются примером ритмов с годовой периодичностью. Интенсивно изучаются суточные (циркадные)ритмы, которые заключаются в закономерных изменениях физиологических показателей организма в зависимости от времени суток. Суточные ритмы многих физиологических процессов являются эндогенными, т. е. определяются механизмами, действующими в самом организме. В пользу этого говорит, например, сохранение ритма, зависящего от фотопериодичности, даже после помещения организма в условия постоянного освещения. Так, мыши, существуя в течение нескольких поколений при постоянном освещении, по возвращении в условия чередования света и темноты, воспроизводили нормальную суточную периодичность двигательной активности.
Суточные ритмы реагируют на действие внешних факторов, прежде всего чередование света и темноты, высоких и низких температур. При этом изменяется положение фаз ритмических изменений. У человека, например, при переходе к образу жизни, противоположному обычному (бодрствование ночью, сон днем), через 9—10 сут наблюдается смена фаз ритма колебаний температуры тела. Внешние факторы способствуют выявлению эндогенных суточных ритмов путем синхронизации ритмических изменений отдельных клеток или особей. Например, в популяциях плодовых мух, выдерживаемых в постоянных условиях освещения, регистрируется непериодический вылет имаго из куколок. После воздействия светом благодаря синхронизации процесс становится периодическим. Таким образом, внешние факторы могут служить указателем времени. Средняя длина периодов суточных ритмов у растений варьирует от 22 до 28 ч, у животных в большинстве случаев этот показатель укладывается в пределы 23—25 ч. Существуют определенные индивидуальные колебания длины периодов. При постоянных условиях длительность цикла активности у четырех мышей составила в одном из опытов от 25,0 до 25,4 ч. Эндогенные суточные ритмы ограничивают осуществление тех или иных функций определенным временем суток. Это имеет большое приспособительное значение, так как приводит организм в состояние «готовности» по отношению к ожидаемым условиям среды в определенное время. Так, вечерние прыжки лососей, требующие соответствующего энергетического подкрепления, совпадают с максимумом активности поедаемых насекомых. Благодаря эндогенному ритму организмы сохраняют экологически целесообразную ориентировку во времени суток, несмотря на периодическое выключение внешних указателей времени, например в связи с непогодой. Хронобиология представляет собой интенсивно развивающуюся область науки, однако до сих пор нет отчетливого понимания механизма биологических часов или способов сопряжения эндогенных ритмов и циклических изменений внешних факторов. Между тем познание указанного механизма имеет большое значение, например для выбора оптимального режима активности человека. Так, ночная работа в режиме «12-часовая смена, 24-часовой отдых» менее благоприятна, чем многонедельная ночная работа, укладывающаяся в суточный ритм. Данные о суточном ритме клеточной пролиферации используются при выборе времени назначения лекарств, действующих на делящиеся клетки, например в онкологических клиниках. биологическая смерть. Реанимация. Жизнь тканей и органов вне организма. Культурой тканей называется метод, дающий возможность выращивать вне организма кусочки тканей и даже отдельные клетки. На теоретическую возможность такого метода указал А. Е. Голубев еще в 1874 г., а применил его впервые И. П. Скворцов в 1885 г. Методы культуры тканей были усовершенствованы американскими биологами Г. Гаррисоном в 1907 г. и Д. Кар-релем в 1910 г. и нашли широкое распространение в лабораториях многих стран. Для культуры тканей небольшие кусочки органов или суспензию клеток в строго стерильных условиях выделяют, из организма, помещают в стеклянные камеры на специально приготовленные стерильные питательные среды и создают необходимый температурный режим. После некоторого периода покоя клетки в культуре начинают интенсивно размножаться. Питательный материал для роста ткань получает из среды; в нее же поступают продукты жизнедеятельности. Накопление их приводит культуру к старению. Образующиеся клетки становятся мельче. Если своевременно не сделать пересев (пассаж) в свежую среду, ткань погибает. Интенсивность роста клеток в культуре тканей очень велика. Культуры тканей используют в научных исследованиях для выяснения многих вопросов теоретической и практической биологии и медицины. Так, с помощью культуры тканей были детально изучены все стадии митоза. Этот метод был применен также для изучения дифференцировки клеток во время эмбрионального развития органов млекопитающих и птиц. Культуры тканей используют для решения многих вопросов цитологии, гистологии, эмбриологии, физиологии, онкологии, генетики. Клеточные культуры широко применяют для изучения действия различных повреждающих факторов на генетический аппарат клеток, для исследования ферментных систем клетки. Клеточные культуры используют для производства некоторых биологически активных препаратов: ферментов, антител. Так можно размножать вирусы гриппа, полиомиелита, клещевого энцефалита, что необходимо для получения профилактических сывороток. Большое практическое значение имеет культивирование клеток костного мозга. Клиническая и биологическая смерть. У высших многоклеточных организмов смерть — не одномоментное событие. В этом процессе различают два этапа — клинической и биологической смерти. Признаком клинической смерти служит прекращение важнейших жизненных функций: потеря сознания, отсутствие сердцебиения и дыхания. Однако в это время большинство клеток и органов еще остаются живыми, в них еще совершаются процессы самообновления, их метаболизм еще упорядочен. Лишь постепенно наступает биологическая смерть, связанная с прекращением самообновления, химические процессы становятся неупорядоченными, в клетках происходит аутолиз (самопереваривание) и разложение. Эти процессы происходят в различных органах с неодинаковой скоростью, которая определяется степенью чувствительности тканей к нарушению снабжения их кислородом. Нервные клетки коры мозга являются наиболее чувствительными, в них некротические изменения происходят уже через 5—6 мин, при более длительном прекращении дыхания и кровообращения наступают необратимые изменения в клетках коры
большого мозга. Некоторым больным после этого удается восстановить сердечную деятельность, дыхание и другие функции, но сознание не восстанавливается. С целью удлинения периода клинической смерти используют обшее. охлаждение организма. Гипотермия, замедляя обменные процессы, обеспечивает большую устойчивость к кислородному голоданию. Так, при снижении температуры тела до 24—26° срок клинической смерти у собак удлиняется до 1 ч, а у обезьян до 30 мин. В эксперименте возможно и более глубокое и длительное охлаждение. Реанимация. Изучение процесса умирания организма привело к заключению, что между жизнью и смертью существует переходное состояние — клиническая смерть, когда признаки жизни уже не наблюдаются, но ткани еще живы. Следовательно, в это время еще есть возможность возвратить организм к жизни. Разумеется, вернуть к жизни из состояния клинической смерти можно лишь тогда, когда не повреждены жизненно важные органы. Оживление возможно при наступлении смерти от кровопотери, поражения электрическим током, утопления и других причин, не связанных с повреждением жизненно важных органов. В случае смерти от рака, далеко зашедшего туберкулеза, повреждений сердца и т. д. период клинической смерти также имеется, поэтому теоретически оживление возможно, но организм уже настолько разрушен заболеванием, что не будет жизнеспособным. Как показывают работы по оживлению, оно возможно у человека лишь в тех случаях, когда с момента начала клинической смерти прошло не более 6—7 мин. После этого начинаются уже необратимые процессы в коре большого мозга. Успехи хирургии, особенно грудной и, в частности, операций на сердце, в большой мере связаны с широким внедрением принципов реанимации в клинику. Операции, на которые до середины XX в. хирург решался редко в силу частой смерти больных, нашли широкое распространение. Методы реанимации применяются не только в хирургической практике, но и при различных угрожающих состояниях в любой области практической медицины.
Дата добавления: 2015-04-24; Просмотров: 3594; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |