Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Алгоритм исключения Гаусса при наличии вырожденных главных подматриц. Алгоритм с перестановкой строк или с выбором главного элемента




См. вопрос 4

Алгоритм исключения Гаусса без перестановки строк. LU- и LDV-разложения.

LU-разложение – представление матрицы A в виде LU, где L – нижняя треугольная матрица, а U — верхняя треугольная матрица. LU-разложение еще называют LU-факторизацией.

LU-разложение используется для решения систем линейных уравнений и для обращения матриц. Этот метод является одной из разновидностей метода Гаусса.


1) Выбирают первый слева столбец матрицы, в котором есть хоть одно отличное от нуля значение.

2) Если самое верхнее число в этом столбце есть ноль, то меняют всю первую строку матрицы с другой строкой матрицы, где в этой колонке нет нуля.

3) Все элементы первой строки делят на верхний элемент выбранного столбца.

4) Из оставшихся строк вычитают первую строку, умноженную на первый элемент соответствующей строки, с целью получить первым элементом каждой строки (кроме первой) ноль.

5) Далее проводят такую же процедуру с матрицей, получающейся из исходной матрицы после вычёркивания первой строки и первого столбца.

6) После повторения этой процедуры n − 1 раз получают верхнюю треугольную матрицу

7) Вычитаем из предпоследней строки последнюю строку, умноженную на соответствующий коэффициент, с тем, чтобы в предпоследней строке осталась только 1 на главной диагонали.

8) Повторяют предыдущий шаг для последующих строк. В итоге получают единичную матрицу и решение на месте свободного вектора (с ним необходимо проводить все те же преобразования).

9) Чтобы получить обратную матрицу, нужно применить все операции в том же порядке к единичной матрице.

Для решения следующей системы уравнений:

Запишем её в виде матрицы 3×4, где последний столбец является свободным членом:

Проведём следующие действия:

· К строке 2 добавим: −4 × Строку 1.

· К строке 3 добавим: −9 × Строку 1.

Получим:

· К строке 3 добавим: −3 × Строку 2.

· Строку 2 делим на −2

· К строке 1 добавим: −1 × Строку 3.

· К строке 2 добавим: −3/2 × Строку 3.

· К строке 1 добавим: −1 × Строку 2.

В правом столбце получаем решение:

.


10. Свойства и определения матричных и векторных норм. Теорема Коши – Шварца. Число обусловленности системы линейных уравнений. Геометрический смысл числа обусловленности.




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 771; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.