Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Кислоты и основания. Влияние положения элемента в периодической системе и степени окисления элемента на состав и кислотно-основные свойства гидроксидов элементов. 1 страница




Оксиды. Химические свойства кислотных, основных, амфотерных оксидов. Изменение кислотно-основных свойств оксидов в периодах и группах периодической системы. Влияние степени окисления на кислотно-основные свойства оксида элемента.

Комплексные соединения. Основные положения координационной теории. Строение комплексного соединения: комплексообразователь, лиганды, внешняя и внутренняя сфера. Координационное число и степень окисления иона-комплексообразователя. Заряд комплексного иона.

Окислительно-восстановительные системы с инертными электродами. Стандартные окислительно-восстановительные потенциалы и оценка направления самопроизвольного протекания ОВР. Выбор окислителей и восстановителей с учетом стандартных потенциалов.

Стандартные потенциалы окислительно-восстановительных реакций: Возможность протекания любой окислительно-восстановительной реакции в реальных условиях обусловлена рядом причин: температурой, природой окислителя и восстановителя, кислотностью среды, концентрацией веществ, участвующих в реакции, и т. д. Учесть все эти факторы бывает трудно, но, помня о том, что любая окислительно-восстановительная реакция протекает с переносом электронов от восстановителя к окислителю, можно установить критерий возможности протекания такой реакции.

Количественной характеристикой окислительно-восстановительных процессов являются нормальные окислительно-восстановительные потенциалы окислителей и восстановителей (или стандартные потенциалы электродов).

Чтобы понять физико-химический смысл таких потенциалов, необходимо проанализировать так называемые электрохимические процессы.

Химические процессы, сопровождающиеся возникновением электрического тока или вызываемые им, называются электрохимическими.

Чтобы понять природу электрохимических процессов, обратимся к рассмотрению нескольких достаточно простых ситуаций. Представим себе металлическую пластинку, погруженную в воду. Под действием полярных молекул воды ионы металла отрываются от поверхности пластинки и гидратированными переходят в жидкую фазу. Последняя при этом заряжается положительно, а на металлической пластинке появляется избыток электронов. Чем дальше протекает процесс, тем больше становится заряд, как пластинки, так и жидкой фазы.

 

Благодаря электростатическому притяжению катионов раствора и избыточных электронов металла на границе раздела фаз возникает так называемый двойной электрический слой, который тормозит дальнейший переход ионов металла в жидкую фазу. Наконец, наступает момент, когда между раствором и металлической пластинкой устанавливается равновесие, которое можно выразить уравнением:

Ме0 – ne- ↔ Men+

или с учетом гидратации ионов в растворе:

Ме0 – ne- + mH2O ↔ Men+ ∙ mH2O

 

Состояние этого равновесия зависит от природы металла, концентрации его ионов в растворе, от температуры и давления.

При погружении металла не в воду, а в раствор соли этого металла равновесие в соответствии с принципом Ле Шателье смещается влево и тем больше, чем выше концентрация ионов металла в растворе. Активные металлы, ионы которых обладают хорошей способностью переходить в раствор, будут в этом случае заряжаться отрицательно, хотя в меньшей степени, чем в чистой воде.

Равновесие можно сместить вправо, если тем или иным способом удалять электроны из металла. Это приведет к растворению металлической пластинки. Наоборот, если к металлической пластинке подводить электроны извне, то на ней будет происходить осаждение ионов из раствора.

При погружении металла в раствор на границе раздела фаз образуется двойной электрический слой. Разность потенциалов, возникающую между металлом и окружающей его жидкой фазой, называют электродным потенциалом. Этот потенциал является характеристикой окислительно-восстановительной способности металла в виде твердой фазы.

У изолированного металлического атома (состояние одноатомного пара, возникающее при высоких температурах и высоких степенях разрежения) окислительно-восстановительные свойства характеризуются другой величиной, называемой ионизационным потенциалом. Ионизационный потенциал — это энергия, необходимая для отрыва электрона от изолированного атома.

Абсолютное значение электродного потенциала нельзя измерить непосредственно. Вместе с тем не представляет труда измерение разности электродных потенциалов, которая возникает в системе, состоящей из двух пар металл - раствор. Такие пары называют полуэлементами. Условились определять электродные потенциалы металлов по отношению к так называемому стандартному водородному электроду, потенциал которого произвольно принят за ноль. Стандартный водородный электрод состоит из специально приготовленной платиновой пластинки, погруженной в раствор кислоты с концентрацией ионов водорода 1 моль/л и омываемой струёй газообразного водорода под давлением 105 Па, при температуре 25 °С.

 

Ряд стандартных электродных потенциалов: Если пластинку металла, погруженную в раствор его соли с концентрацией ионов металла, равной 1 моль/л, соединить со стандартным водородным электродом, то получится гальванический элемент. Электродвижущая сила этого элемента (ЭДС), измеренная при 25 °С, и характеризует стандартный электродный потенциал металла, обозначаемый обычно как Е° или φ°.

Стандартные потенциалы электродов, выступающих как восстановители по отношению к водороду, имеют знак “-”, а знак “+” имеют стандартные потенциалы электродов, являющихся окислителями.

Металлы, расположенные в порядке возрастания их стандартных электродных потенциалов, образуют так называемый электрохимический ряд напряжений металлов: Li, Rb, К, Ва, Sr, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Cd, Co, Ni, Sn, Pb, H, Sb, Bi, Cu, Hg, Ag, Pd, Pt, Au.

Значение стандартного электродного потенциала водородного электрода, являющегося электродом сравнения и соответствующего процессу: 2Н+ + 2е = Н2, принято равным нулю.

Ряд напряжений характеризует химические свойства металлов:

1. Чем более отрицателен электродный потенциал металла, тем больше его восстановительная способность.

2. Каждый металл способен вытеснять (восстанавливать) из растворов солей те металлы, которые стоят в электрохимическом ряду напряжений металлов после него.

3. Все металлы, имеющие отрицательный стандартный электродный потенциал, т. е. находящиеся в электрохимическом ряду напряжений металлов левее водорода, способны вытеснять его из растворов кислот.

 

Как и в случае определения значения Е° металлов, значения Е° неметаллов измеряются при температуре 25 °С и при концентрации всех атомных и молекулярных частиц, участвующих в равновесии, равной 1 моль/л.

Алгебраическое значение стандартного окислительно-восстановительного потенциала характеризует окислительную активность соответствующей окисленной формы.

Количественным критерием оценки возможности протекания той или иной окислительно-восстановительной реакции является положительное значение разности стандартных окислительно-восстановительных потенциалов полуреакций окисления и восстановления.

 

Стандартные электродные потенциалы окислительно-восстановительных систем:

окисленная форма количество электронов восстановленная форма Е0, В
F2 2e 2F- 2,87
O3 + 2H+ 2e O2 + H2O 2,07
H2O2 + 2H+ 2e 2H2O 1,77
Au+ 1e Au 1,68
MnO4- + 8H+ 5e Mn2+ + 4H2O 1,51
HClO + H+ 2e Cl- + H2O 1,50
PbO2 + 4H+ 2e Pb2+ + 2H2O 1,46
ClO3- + 6H+ 6e Cl- + 3H2O 1,45
ClO4- + 8H+ 8e Cl- + 4H2O 1,38
Cl2 2e 2Cl- 1,34
Cr2O72- + 14H+ 6e 2Cr3+ + 7H2O 1,33
MnO2 + 4H+ 2e Mn2+ + 2H2O 1,23
Pt2+ 2e Pt 1,20
Br2 2e 2Br- 1,07
HNO2 + H+ 1e NO + H2O 1,00
NO3- + 4H+ 3e NO + 2H2O 0,96
Hg2+ 2e Hg 0,84
Ag+ 1e Ag 0,80
NO3- + 2H+ 1e NO2 + H2O 0,80
Fe3+ 1e Fe2+ 0,77
O2 + 2H+ 2e H2O2 0,68
MnO4- + 2H2O 3e MnO2 + 4OH- 0,60
I2 2e 2I- 0,54
Cu2+ 2e Cu 0,34
SO42- + 2H+ 2e SO32- + H2O 0,22
Sb3+ 3e Sb 0,20
SO42- + 2H+ 2e SO2 + H2O 0,17
Cu2+ 1e Cu+ 0,16
Cu+ 1e Cu 0,15
S + 2H+ 2e H2S 0,14
2H+ 2e H2 0,0000
Fe3+ 3e Fe -0,06
Se + 2H+ 2e H2Se -0,08
CrO42- + 4H2O 3e [Cr(OH)6]3- + 5OH- -0,13
Pb2+ 2e Pb -0,13
Sn2+ 2e Sn -0,14
O2 + 2H2O 2e H2O2 -0,15
Ni2+ 2e Ni -0,23
Co2+ 2e Co -0,29
Cd2+ 2e Cd -0,40
Cr3+ 1e Cr2+ -0,41
Fe2+ 2e Fe -0,44
Cr3+ 3e Cr -0,74
Zn2+ 2e Zn -0,76
2H2O 2e H2 +2OH- -0,83
Cr2+ 2e Cr -0,91
Mn2+ 2e Mn -1,18
[Zn(OH)4]2- 2e Zn +4OH- -1,20
Al3+ 3e Al -1,66
U3+ 3e U -1,80
H2 2e 2H- -2,23
[Al(OH)4]- 3e Al + 4OH- -2,33
Mg2+ 2e Mg -2,37
Na+ 1e Na -2,71
Ca2+ 2e Ca -2,87
Sr2+ 2e Sr -2,89
Ba2+ 2e Ba -2,91
K+ 1e K -2,92
Cs+ 1e Cs -2,92
Rb+ 1e Rb -2,92
Li+ 1e Li -3,01

 



Комплексные соединения называют часто координационными соединениями, подчеркивая тем самым способность простых неизменных частиц определенным образом располагаться (координироваться) друг около друга в комплексном ионе или комплексной молекуле.
Природу химических связей в комплексах, их строение и принципы их образования объясняет координационная теория.
Метод валентных связей предполагает sp3d2-гибридизацию валентных орбиталей кобальта. Такая структура соответствует геометрической фигуре октаэдр.

В представлении теории кристаллического поля d–подуровень расщепляется на два новых подуровня в октаэдрическом поле лигандов, причем, расщепление в слабом поле лигандов, которое создают анионы фтора (F-), относящиеся (как и анионы всех галогенов типа Х-) к лигандам области слабого поля. Так как расщеплением можно пренебречь, правило Хунда распространяется на все пять d-орбиталей иона кобальта и заполнение орбиталей в комплексном анионе [СоF6]3- будет таким же как и в свободном ионе Со3+. Всего одна пара и четыре неспаренных d-электрона. Комплекс парамагнитен. Если сменить лиганд слабого поля на лиганд сильного поля, например фторид на цианид-ион относящийся к лигандам сильного поля, в комплексном анионе [Co(CN)6]3- все шесть d-электронов катиона кобальта будут находиться на трех нижних орбиталях dε. Комплекс диамагнитен – все электроны спарены.

Основы современной координационной теории были изложены в конце прошлого века швейцарским химиком Альфредом Вернером, обобщившим в единую систему весь накопившийся к тому времени экспериментальный материал по комплексным соединениям. Им были введены понятия о центральном атоме (комплексообразователь) и его координационном числе, внутренней и внешней сфере комплексного соединения, изомерии комплексных соединений, предприняты попытки объяснения природы химической связи в комплексах.
Все основные положения координационной теории Вернера используются и в настоящее время.


Комплексообразователь: Образование комплексного иона или нейтрального комплекса можно представить себе в виде обратимой реакции общего типа:
M + nL =[MLn]
где M – нейтральный атом, положительно или отрицательно заряженный условный ион, объединяющий (координирующий) вокруг себя другие атомы, ионы или молекулы L. Атом M получил название комплексообразователя или центрального атома.
В комплексных ионах [Cu(NH3)4]2+, [SiF6]2-, [Fe(CN)6]4-,[BF4]- комплексообразователями являются медь(II), кремний(IV), железо(II), бор(III).
Чаще всего комплексообразователем служит атом элемента в положительной степени окисления.
Отрицательные условные ионы (т.е. атомы в отрицательной степени окисления) играют роль комплексообразователей сравнительно редко. Это, например, атом азота(-III) в катионе аммония [NH4]+ и т.п.
Атом-комплексообразователь может обладать нулевой степенью окисления. Так, карбонильные комплексы никеля и железа, имеющие состав [Ni(CO)4] и [Fe(CO)5], содержат атомы никеля(0) и железа(0).
Комплексообразователь (выделен желтым цветом) может участвовать в реакциях получения комплексов, как будучи одноатомным ионом, например:
Ag+ + 2NH3 = [Ag(NH3)2]+;
Ag+ + 2CN- = [Ag(CN)2]-
так и находясь в составе молекулы:
SiF4 + 2F- =[SiF6]2-;
I2 + I- = [I(I)2]-;
PH3 + H+ =[PH4]+;
BF3 + NH3 =[B(NH3)F3]
В комплексной частице может быть два и более атомов-комплексообразователей. В этом случае говорят о многоядерных комплексах.
Комплексное соединение может включать несколько комплексных ионов, в каждом из которых содержится свой комплексообразователь.
Например, в одноядерном комплексном соединении состава [Cu(NH3)4][PtCl6]комплексообразователи – Cu(II) и Pt(IV).

Лиганды: В комплексном ионе или нейтральном комплексе вокруг комплексообразователя координируются ионы, атомы или простые молекулы (L). Все эти частицы, имеющие химические связи с комплексообразователем, называются лигандами (от латинского "ligare" - связывать). В комплексных ионах [SnCl6]2- и [Fe(CN)6]4- лигандами являются ионы Cl- и CN-, а в нейтральном комплексе [Cr(NH3)3(NCS)3] лиганды – молекулы NH3 и ионы NCS-.
Лиганды, как правило, не связаны друг с другом, и между ними действуют силы отталкивания. Лигандами могут быть различные неорганические и органические ионы и молекулы. Важнейшими лигандами являются ионы CN-, F-, Cl-, Br-, I-, NO2-, OH-, SO3,S2-, C2O42-, CO32-, молекулы H2O, NH3, CO, карбамида (NH2)2CO, органических соединений – этилендиамина NH2CH2CH2NH2, a-аминоуксусной кислоты NH2CH2COOH и этилендиаминтетрауксусной кислоты (ЭДТА)и другие.


Дентатность лиганда: Чаще всего лиганд бывает связан с комплексообразователем через один из своих атомов одной двухцентровой химической связью. Такого рода лиганды получили название монодентатных. К числу монодентатных лигандов относятся все галогенид-ионы, цианид-ион, аммиак, вода и другие. Некоторые распространенные лиганды типа молекул воды H2O, гидроксид-иона OH-, тиоцианат-иона NCS-, амид-иона NH2-, монооксида углерода CO в комплексах преимущественно монодентатны, хотя в отдельных случаях (в мостиковых структурах) становятся бидентатными.
Существует целый ряд лигандов, которые в комплексах являются практически всегда бидентатными. Это этилендиамин, карбонат-ион, оксалат-ион и т.п. Каждая молекула или ион бидентатного лиганда образует с комплексообразователем две химические связи в соответствии с особенностями своего строения.

Например, в комплексном соединении [Co(NH3)4CO3]NO3 бидентатный лиганд – ион CO32- - образует две связи с комплексообразователем – условным ионом Co(III), а каждая молекула лиганда NH3 – только одну связь.
Полидентатные лиганды могут выступать в роли мостиковых лигандов, объединяющих два и более центральных атома.

Координационное число: Важнейшей характеристикой комплексообразователя является количество химических связей, которые он образует с лигандами, или координационное число (КЧ). Эта характеристика комплексообразователя определяется главным образом строением его электронной оболочки и обусловливается валентными возможностями центрального атома или условного иона-комплексообразователя.
Когда комплексообразователь координирует монодентатные лиганды, то координационное число равно числу присоединяемых лигандов. А число присоединяемых к комплексообразователю полидентатных лигандов всегда меньше значения координационного числа.
Значение координационного числа комплексообразователя зависит от его природы, степени окисления, природы лигандов и условий (температуры, природы растворителя, концентрации комплексообразователя и лигандов и др.), при которых протекает реакция комплексообразования. Значение КЧ может меняться в различных комплексных соединениях от 2 до 8 и даже выше. Наиболее распространенными координационными числами являются 4 и 6.
Между значениями координационного числа и степенью окисления элемента-комплексообразователя существует определенная зависимость. Так, для элементов-комплексообразователей, имеющих степень окисления +I [Ag(I), Cu(I), Au(I), (II) и др.] наиболее характерно координационное число 2 – например, в комплексах типа [Ag(NH3)2]+, [Cu(CN)2]-, [IBr2]-.
Элементы-комплексообразователи со степенью окисления +II [Zn(II), Pt(II), Pd(II), Cu(II) и др.) часто образуют комплексы, в которых проявляют координационное число 4, такие как [Zn(NH3)4]2+, [PtCl4]2-, [Pd(NH3)2Cl2]0, [ZnI4]2-, [Cu(NH3)4]2+.
В аквакомплексах координационное число комплексообразователя в степени окисления +II чаще всего равно 6: [Fe(H2O)6]2+, [Mg(H2O)6]2+, [Ni(H2O)6]2+.
Элементы-комплексообразователи, обладающие степенью окисления +III и +IV [Pt(IV), Al(III), Co(III), Cr(III), Fe(III)], имеют в комплексах, как правило, КЧ 6.
Например, [Co(NH3)6]3+, [Cr(OH)6]3-, [PtCl6]2-, [AlF6]3-, [Fe(CN)6]3-.
Известны комплексообразователи, которые обладают практически постоянным координационным числом в комплексах разных типов. Таковы кобальт(III), хром(III) или платина(IV) с КЧ 6 и бор(III), платина(II), палладий(II), золото(III) с КЧ 4. Тем не менее большинство комплексообразователей имеет переменное координационное число. Например, для алюминия(III) возможны КЧ 4 и КЧ 6 в комплексах [Al(OH)4]- и [Al(H2O)2(OH)4]-.
Координационные числа 3, 5, 7, 8 и 9 встречаются сравнительно редко. Есть всего несколько соединений, в которых КЧ равно 12 – например, таких как K9[Bi(NCS)12].

Внутренняя и внешняя сфера комплексного соединения:
Лиганды, непосредственно связанные с комплексообразователем, образуют вместе с ним внутреннюю (координационную) сферу комплекса.
Так, в комплексном катионе [Cu(NH3)4]2+ внутренняя сфера образована атомом комплексообразователя – меди(II) и молекулами аммиака, непосредственно с ним связанными.
Обозначается внутренняя сфера квадратными скобками: [Fe(CN)6]3-, [HgI4]2-, [SnCl6]2-. В зависимости от соотношения суммарного заряда лигандов и комплексообразователя внутренняя сфера может иметь положительный заряд, например, [Al(H2O)6]3+, либо отрицательный, например, [Ag(S2 O3)2]3-, или нулевой заряд, например, как для [Cr(NH3)3(NCS)3]0.
Ионы, нейтрализующие заряд внутренней сферы, но не связанные с комплексообразователем ковалентно, образуют внешнюю сферу комплексного соединения.
Например, в комплексном соединении [Zn(NH3)4]Cl2 два иона Cl- находятся во внешней сфере.Внешнесферные ионы Cl- находятся на более значительном удалении от комплексообразователя, чем молекулы NH3, иначе говоря, расстояние Zn – Cl больше, чем длина химической связи Zn – N. Более того, химическая связь комплексного катиона [Zn(NH3)4]2+ и хлорид-ионов Cl- имеет ионный характер, в то время как молекулы аммиака NH3, входящие во внутреннюю сферу, образуют с комплексообразователем Zn(II) ковалентные связи по донорно-акцепторному механизму (донором неподеленных пар электронов являются атомы азота в NH3). Таким образом, различие между лигандами внутренней сферы и ионами внешней сферы очень существенно. Изображая формулу комплексного соединения, внешнесферные ионы располагают за квадратными скобками. Например, в соединениях [Cu(NH3)4](OH)2 и K2[HgI4] внешнесферными ионами являются соответственно ионы OH- и K+. Вполне понятно, что в нейтральных комплексах [Cr(NH3)3(NCS)3]0 и [Pd(NH3)2Cl2]0 внешняя сфера отсутствует. Обычно внешнюю сферу составляют простые одноатомные или многоатомные ионы. Однако возможны случаи, когда комплексное соединение состоит из двух и более внутренних сфер, выполняющих функции катионной и анионной части соединения. Здесь каждая из внутренних сфер является внешней по отношению к другой.
Например, в соединениях [Cu(NH3)4][PtCl6] и [Ni(NH3)6]2[Fe(CN)6] формально функции внешнесферных ионов могут выполнять:
комплексные катионы [Cu(NH3)4]2+ и [Ni(NH3)6]2+,
комплексные анионы [PtCl6]2- и [Fe(CN)6]4-.
При растворении в воде комплексные соединения необратимо диссоциируют на ионы:
[Cu(NH3)4](OH)2 = [Cu(NH3)4]2+ + 2OH-
[Ni(NH3)6]2[Fe(CN)6] = 2[Ni(NH3)6]2+ + [Fe(CN)6]4-
Кислоты с комплексными анионами в водном растворе подвергаются необратимому протолизу: H2[SiF6] + 2H2O = 2H3O+ + [SiF6]2-
Такие кислоты относятся к категории сильных кислот.

Классификация и номенклатура комплексных соединений. Основные типы комплексных соединений.

Основы современной номенклатуры комплексных соединений были заложены Альфредом Вернером. До его работ в этой области химии не существовало никакой системы. Комплексные соединения называли, руководствуясь их внешним видом, например, пурпуреосоль (красная соль) [Co(NH3)5Cl]Cl2, лутеосоль (желтая соль) состава [Co(NH3)6]Cl3, либо происхождением, например, красная кровяная соль K3[Fe(CN)6] и т.п.
Немало комплексных соединений получили имена химиков, синтезировавших их: соль Фишера K3[Co(NO2)6], соль Рейнеке NH4[Cr(NH3)2(NCS)4] и др.
Современная номенклатура комплексных соединений основана на рекомендациях ИЮПАК (Международный союз общей и прикладной химии) и адаптирована к традициям русского химического языка.

Названия лигандов: Названия анионных лигандов получают концевую гласную -о, которой сопровождается название соответствующего аниона (или корня названия аниона):
CH3COO- - ацетато
NO- - нитрозо
CN- - циано
NO2- - нитро
CNS- - тиоциано

CO32- - карбонато
O22- - пероксо
C2O42- - оксалато
OH- - гидроксо
Cl- - хлоро
SO32- - сульфито
H- - гидридо
S2O32- - тиосульфато
Иногда анионные лиганды имеют специальные названия, например O2- - оксо, S2- - тио, HS- - меркапто. Анионы углеводородов в качестве лигандов называют так: CH3- - метил, C5H5- - циклопентадиенил.
Для нейтральных лигандов используют номенклатурные названия веществ без изменений (N2 - диазот, N2H4 - гидразин, C2H4 - этилен и т.д.), кроме веществ, которые, выступая в роли лигандов, получают следующие специальные названия:
H2O - аква
NH3 - аммин
NO - нитрозил
CO - карбонил
SO2 - диоксосера
PF3 - трифторофосфор
Громоздкие по написанию формулы органических лигандов заменяют полностью или частично буквенными обозначениями, например:
NH2CH2CH2NH2 (этилендиамин) – en
P(C2H5)3 (триэтилфосфин) – PEt3
(NH2)2CO (карбамид) – ur
C5H5N (пиридин) – py
Для катионных лигандов применяют следующие названия:
N2H5+ - гидразиний
NO2+ - нитроилий
NO+ - нитрозилий
H+ - гидро
Порядок перечисления лигандов: Правила изображения формул комплексных соединений следующие. При составлении формулы одноядерного комплекса (ионного или нейтрального) слева ставят символ центрального атома (комплексообразователя), а затем перечисляют лиганды в порядке уменьшения их зарядов от положительных значений к отрицательным: [M(L1)+(L2)0(L3)- ]. При равенстве зарядов лигандов пользуются практическим рядом элементов. Например, H2O записывают левее NH3, C5H5N – левее CO. Более простые лиганды в формулах указывают левее более сложных; так, N2 пишут левее NH3, NH3 – левее N2H4, N2H4 – левее NH2OH. В формулах многоядерных комплексов указывают число центральных атомов, например [MxLy].
Названия веществ строят из названий лигандов с предшествующей числовой приставкой (греческое числительное), указывающей число лигандов каждого типа в формуле, и названия комплексообразователя в определенной форме. Если название лиганда уже содержит числовую приставку, а также в тех случаях, когда такая приставка создает неясность в строении лиганда, используют умножающие приставки, такие как бис-, трис-, тетракис-, пентакис- и др.
Например: (SO42-)2 - бис(сульфато-), (NH2CH2CH2NH2)4 - тетракис(этилендиамин).
Перечисление лигандов ведут от отрицательного заряда лиганда к нейтральному и затем положительному, т.е. справа налево по формуле соединения: [M(L1)+(L2)0(L3)-]




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 995; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.