Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Закон сохранения импульса 1 страница




Из второго и третьего законов Ньютона вытекает закон сохранения импульса замкнутой системы.
Совокупность материальных точек (тел), рассматриваемых как единое целое, называется механической системой. Силы взаимодействия между материальными точками механической системы называются внутренними. Силы, с которыми на материальные точки системы действуют внешние тела, называются внешними. Механическая система тел, на которую не действуют внешние силы (они взаимно уравновешиваются), называется замкнутой или изолированной. В такой системе необходимо учитывать только силы взаимодействия между входящими в нее телами (внутренние силы). Строго говоря, изолированных механических систем в природе не существует.
Рассмотрим изолированную механическую систему, состоящую из n тел с массами m1, m2, …, mn. Обозначим скорости этих тел через v1, v2, …, vn а внутреннюю силу, действующую на i-е тело со стороны k-го,- через Fik.


Складывая почленно эти уравнения и группируя силы Fik и Fki, получим:


Согласно третьему закону Ньютона Fik = - Fki, поэтому все скобки в правой части этого уравнения равны нулю, т.е.


Векторная сумма представляет собой импульс всей системы. Таким образом, или
(2.9)

Геометрическая сумма импульсов тел, составляющих замкнутую систему, остаетсяпостоянной при любых движениях и взаимодействиях тел системы.

 

Выражение (2.9) представляет собой закон сохранения импульса: импульс замкнутой системы тел с течением времени не изменяется.
Закон сохранения импульса справедлив не только в классической механике; он выполняется и для замкнутых систем микрочастиц, т.е. действует и в квантовой механике. Другими словами, этот закон носит универсальный характер и является фундаментальным законом природы.
Закон сохранения импульса является следствием однородности пространства: при параллельном переносе в пространстве замкнутой системы тел как целого ее физические свойства и законы движения не изменяются, т.е. не зависят от выбора положения начала координат инерциальной системы отсчета.
В классической механике из-за независимости массы от скорости импульс системы можно выразить через скорость ее центра масс.
Скорость i -й материальной точки связана с ее радиус-вектором ri соотношением:


Следовательно,


Центром масс или центром инерции системы материальных точек называется воображаемая тоска С, положение которой характеризует распределение массы этой системы. Ее радиус-вектор равен


где масса системы.
Скорость центра масс определяется выражением:


т.е.
(2.10)

Другими словами, импульс системы равен произведению массы системы на скорость ее центра инерции.
Подставив выражение (2.10) в (2.9), получим:


т.е. в изолированной механической системе центр масс находится в покое или движется равномерно и прямолинейно.
Если система незамкнутая (на нее действуют помимо внутренних и внешние силы), то выражение (2.9) с учетом (2.10) запишется следующим образом:

или
(2.11)

где ускорение центра масс.
Из (2.11) вытекает закон (теорема) движения центра масс: центр масс системы движется как материальная точка, в которой сосредоточена масса всей системы и на которую действует сила, равная геометрической сумме всех внешних сил, приложенных к системе.

 

3) I. Работа
Количественной характеристикой процесса взаимодействия тел является работа, совершаемая силой А.

Работа есть скалярная величина, равная произведению про­екции силы (на направление перемещения) на величину перемеще­ния точки приложения силы

(3.1)

где a - угол между направлением силы и перемещением. Если a <90°. то сила совершает положительную работу (А>0), если a >90°, то А<0; при a =90° сила работы не совершает, oна лишь искривляет траекторию тела.

Если работа совершается переменной силой F=
F(
S)
, во для элементарного перемещения , а для всего пути

(3.2)

Вычислим для примера работу, совершаемую силой тяжести при движении тела по наклонной плоскости (Рис. 3.1):

,

где h - высота наклонной плоскости. Как видно, работа силы тяжести не зависит от длины пути, а зависит от начального и конечного положений тела. Можно показать, что такой же результат получается для любой криволинейной траектории. Таким же свойством обладает и сила упругости.

Силы, обладающие указанным свойством, называются консервативными или потенциальными.

Для таких сил работа по любому замкнутому контуру равна нулю, или:

(3.3)

Это и есть условие потенциального характера силы.

Работа, совершаемая за единицу временя, называется мощностью:

2. Энергия
В результате совершения работы в окружающих телах происходят определенные изменения - переход одних форм движения материи в другие. Общей количественной мерой различных форм движения материи является физическая величина, которую называют энергией Е.

В физике соответственно различным физическим процессам и взаимодействиям различают механическую энергию; тепловую, электромагнитную, ядерную и т.д.

Энергия может, быть выражена через величины, характеризующие строение и состояние тела. Она является функцией его сос­тояния. Изменение состояния тела, например, его движение, приводит к изменению его энергии, а сам процесс изменения есть результат работы, совершаемой силой, поэтому изменение энергии тела или системы тел определяется работой, совершен­ной приложенными к телу силами:

(3.4)

Механическая энергия состоит из двух величин - кинетической энергии K - энергии движения и потенциальной энергии П - энергии взаимодействия между телами:

(3.5)
3. Кинетическая и потенциальная энергии

Чтобы получить выражение для кинетической энергии подсчитаем работу силы, необходимую для изменения скорости тел от v 1 до v 2:

Итак, совершенная силой работа равна приращению кинетической энергии тела: , где . Потенциальная энергия обусловлена характером взаимодействия между телами, их взаимным расположением. Поэтому вид формулы для потенциальной энергии зависит от конкретного вида силы.

Так, работа силы тяжести, необходимая дня изменения положения тела относительно Земли, равна:

,

где h 1 и h 2 - начальная и конечная высота тела относительно Земли. Эта работа равна изменению потенциальной энергии тела:

,

т.е. совершенная силой работа равна убыли потенциальной энер­гии тела.

Так как , то или (3.7)

Эта формула, связывающая между собой силу, перемещений тела и соответствующее этому изменение его потенциальной энергии, даёт возможность вычислить потенциальную энергию в отдельном случае.

Вычислим, например, потенциальную энергию силы тяготения

Из (3.7) находим и , есть так называемый нулевой уровень потенциальной энер­гии, который обычно выбирается из условия , тогда = 0 и
4. Закон сохранения механической энергии
В изолированной системе кроме полного импульса сохраняю­щейся величиной является и полная механическая энергия.

Так, для двух взаимодействующих материальных точек уравнения движения будут (3.8)

Под действием сил точки совершают перемещения ; . Умножив каждое из уравнений (3.8) на соответствую­щее перемещение, получим:

сложив их, полу­чим:

(3.9)

т.к. , то вместо (3.9) имеем:

или ,

где - изменение кинетической и потенциальной энергии всех тел системы. Тогда , (3.10)

Полная энергия изолированной системы есть величина постоянная. Это и есть формулировка закона сохранения энергии.
5. Удар абсолютно упругих и неупругих тел
Под ударом понимают кратковременное столкновение соударяющихся тел.

Прямая, проходящая через точку соприкосновения обоих тел, называется линией удара (Рис. 3.2). Если она проходит через центры масс тел, то удар центральный. Отношение относительных скоростей шаров после удара U к скорости их v до удара называют коэффициентом восстановления: . Если , то удар абсолютно неупругий, если , то удар абсолютно упругий.

При абсолютно неупругом ударе часть механической энергии тел переходит в другие формы энергии (например, в тепловую). В этом случае выполняется лишь закон сохранения импульса, на основании которого и находим скорость шаров после столкновения:

(3.11)

Найдем изменение кинетической энергии шаров, т.е. ту её часть которая перешла во внутреннюю энергию:

(3.12)

При абсолютно, упругом ударе потерь энергии нет, н в этом случае выполняются законы сохранения импульса и энергии:

Решая эти уравнения, находим:

(3.13)

Когда массы соударяющихся тел равны: , то шары обмени­ваются скоростями:

 

4) I. Кинематика вращательного движения
Абсолютно твердым телом в механике называют совокупность частиц, взаимное расположение которых остается неизменным во время движения.

Вращательным называют такое движение, при котором все точки тела описывают концентрические окружности, центры которых лежат на одной прямой, называемой осью вращения.

Положение вращающегося тела может быть определено взятым с соответствующим знаком двугранным углом j между двумя полуплоскостями, проходящими через ось вращения, одна из которых Q неподвижна относительно С.О., а другая Р связана с телом и вращается вместе о ним (рис. 4.1). Знак j определяют по правилу правого винта. Положение тела в любой момент времени t определяется уравне­нием , дающим закон вращательного движения.

Различные точки тела проходят при одинаковом угловом перемещении d
j
разные линейные перемещения d
S
, которые связаны соотношением:

(4.1)

где r - расстояние от точки тела до оси вращения.

Поэтому вращательное движение удобно характеризовать не линейными, а угловыми величинами, одинаковыми для всех точек тела.

Угловой скоростью называют скорость изменения угла попорота:

(4.2)

Угловым ускорением называют величину, характеризующую быстроту изменения угловой скорости:

(4.3)

С помощью (4.1) можно найти связь и в с соответствующими линейными величинами и :

(4.4) (4.5)

Угловые скорость и ускорение - векторные величины, направленные вдоль оси вращения. Их направление определяют с по­мощью правила правого винта. Так, что:

(4.6) (4.7)

Полное ускорение находится по формуле:

(4.8)

 

2. Кинетическая энергия вращательного движения. Момент инерции.
Если дело вращается вокруг неподвижной оси, то его кинетическая энергия равна:

(Рис. 4.2.)

Используя формулу (4.4), получим

где и - расстояние i-частицы тела до оси вращения; - её масса.

Величина, стоящая в скобках, не зависит от скорости движения тела и характеризует инерционные свойства тела во вращательном движении: чем больше эта величина, тем большую энергию надо затратить для достижения данной скорости. Эта величина, характеризующая твердое тело, а также выбранную, ось вращения, называется моментом инерции тала относительно данной оси . Тогда кинетическую энергию можно записать в виде:

(4.9)

Момент инерции тела вычисляют по формуле:

(4.10)

Для материальной точки, вращающейся вокруг оси, ; для шара, вращающегося вокруг оси, проходящей через его центр, .Полная кинетическая энергия катящегося тела вычисляется по формуле:

(4.11)

Если известен момент инерции относительно оси, проходя через центр инерции тела , можно вычислить момент инерция относительно параллельной оси (теорема Штейнера):

, (4.12)

где - масса тела, - расстояние между осями (Рис. 4.3).


3. Основное уравнение динамики вращательного движения
Рассмотрим цилиндр вращающийся вокруг неподвижной оси (Рис. 4.4) под действием постоянной касательной силы .За время точка приложения силы переместится на и работа этой силы будет , кото­рая равна приращению кинетичес­кой энергии: , т.к. , то

(4.13)

Величину , равную произведению проекции силы на плоскость, перпендикулярную оси вращения, на рассотояние до оси вращения (плечо силы ), называют моментом силы относительно оси :

, (4.14)

Тогда вместо (4.13) запишем:

или (4.15)

Эта формула выражает основное уравнение динамики вращательного движения: момент силы относительно оси вращения равен произведению момента инерции относительно этой оси на угловое ускорение. Роль силы при вращательном движении играет, момент силы, массы - момент инерции. Момент силы - векторная величина, направленная вдоль оси вращения. Его направление определяется правилом правого винта.
4. Момент импульса. Закон сохранения момента импульса
При вращательном движении точки количественной мерой её движения является момент импульса точки относительно оси, который определяется по формуле:

, (4.16)

где - радиус окружности, по которой движется точка; - её имульс

Момент импульса вращающегося тала равен сумме моментов отдельных его частиц:

Если ось вращения неподвижна, то момент импульса вращающегося тела можно найти так:

, (4.17)

где и - масса и радиус вращения точки, - момент

инерции всего тела относительно выбранной оси вращения.

Используя эту формулу, основное уравнение вращательного движения можно записать в виде:

, (4.18)

Если на вращающееся тело не действуют внешние силы или их результирующий момент равен нулю, то момент импульса тела относительно оси вращения есть величина постоянная. Из (4.18) при :

и (4.19)

В изолированной системе полный момент импульса есть величина постоянная. Это есть закон сохранения момента импульса.

 

 

5)
I. Принцип относительности
Как только тело начинает двигаться со скоростью, сравнимой со скоростью света в пустоте , рассмотренные законы механики (классическая механика) становятся неприменимыми. В этом случае они заменяются более общими законами теории относительности (релятивистской теории). Основное содер­жание этой теории составляет доказательство принципа относительности - независимости физических процессов от выбора сис­темы отсчета. Доказательство этого закона в инерциальных системах отсчета рассматривается в специальной теории относи­тельности (С.Т.О.). Таким образом, теория относительности по называет, что законы природы не зависят от выбора системы отсчета, положения и движения наблюдателя, а результаты измерений в различных системах отсчета могут быть сопоставлены.

В классической механике математическим выражением прин­ципа относительности являлись преобразования Галилея. позволявшие сопоставлять результаты измерении в разных И.С.О.

Для случая движения двух И.С.О., изображенных на рис. 5.1,

(5.1)

где - скорость движения системы относительно . Из формул (5.1) вытекает и классический закон сложения ско­ростей:

Эта формула оказалась неприменимой при определении скорости света по отношению к Земле (опыт Майкельсона и Морли, 1887 г.). Результат опыта показал, что скорость свата во всех инерциальных системах отсчета постоянна, она не зависит ни от ско­рости источника, ни от скорости приемника.
2. Постулаты Эйнштейна
Выход из создавшегося положения был найден Эйнштейном, который, анализируя опытные факты, сформулировал два постула­та:

1. Не только механические, но и все физические процессы про­текают одинаково во всех И.С.О.

2. Скорость света в вакууме есть величина постоянная.

Этих двух постулатов оказалось достаточно, чтобы разре­шить все возникшие противоречия. Однако второй постулат ока­зался в противоречии с преобразованиями Галилея, из чего сле­довало, что преобразования Галилея необходимо было пересмот­реть. Такой пересмотр оказался связанным с коренной ломкой представлений о пространстве и времени. В частности, из пос­тулатов следует, что понятие одновременности, считавшееся са­мо собой разумеющимся, не является абсолютным: в разных сис­темах отсчета время течет по-разному .
3. Преобразования Лоренца
В С.Т.О. преобразования координат (5.1), описывающие переход от одной И.С.О. к другой, заменяются новыми соотношениями, которые удовлетворяют постоянству скорости света - преоб­разованиями Лоренца. Для частного случая двух систем и , находящихся в относительном движении вдоль оси (Рис. 5.1), они имеют вид:

(5.3)

где .

Из этих формул видно, что при малых скоростях для формулы (5.3) переходят в (5.1), следовательно, законы классической физики входят в С.Т.О. как частный случай.

Из преобразований Лоренца вытекают основные следствия.
4. Замедление времени
В направлении часы, связанные с системой , измеряют интервал времени: . При наблюдении в движущейся системе этот интервал становится равным




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 791; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.