Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Графічний метод. Найбільш простим і наочним методом лінійного програмування є графічний метод




Найбільш простим і наочним методом лінійного програмування є графічний метод. Він застосовується для розв’язання задач лінійного програмування, які задано у неканонічній формі і багатьма змінними у канонічній формі при умові, що вони вміщують не більше двох вільних змінних.

З геометричної точки зору у задачах лінійного програмування відшукується така кутова точка або набір точок із припустимої множини розв’язків, на якій досягається сама верхня (нижня) лінія рівня, розміщена далі (ближче) інших у напрямку найбільш швидкого зростання.

Для знаходження екстремального значення цільової функції при графічному розв’язанні задач лінійного програмування використовують вектор на площині .

З курсу вищої математики відомо, що для функції двох змінних , що є диференційованою у точці , градієнтом функції називається вектор, координатами якого є значення частинних похідних у точці .

Градієнт функції характеризує напрямок і величину максимальної швидкості зростання цієї функції у точці.

Для визначення геометричного змісту градієнта функції введемо поняття поверхні рівня.

Поверхнею рівня функції називається поверхня, на якій ця функція зберігає постійне значення.

Градієнт функції у даній точці ортогональний до цієї поверхні.

У випадку функції двох змінних, замість поверхні рівня будуть фігурувати лінії рівня.

Надалі будемо позначати градієнт цільової функції . Цей вектор показує напрямок найшвидшої зміни цільової функції.

,

де - одиничні вектори за осями та відповідно.

Таким чином . Координатами вектора є коефіцієнти цільової функції .

 

Алгоритм розв’язання задачі

1. Знаходимо область припустимих розв’язків системи обмежень задачі.

2. Будуємо вектор .

3. Проведемо лінію рівня , яка ортогональна до вектора .

4. Лінію рівня переміщуємо за напрямком вектора для задач на максимум і в напрямку протилежному - для задач на мінімум.

Переміщення лінії рівня здійснюється до тих пір, доки у неї не буде тільки однієї спільної точки з областю припустимих розв’язків. Ця точка визначає єдиний розв’язок задачі лінійного програмування і буде точкою екстремуму. Якщо ж лінія рівня буде паралельною одній з сторін області припустимих розв’язків, то у цьому випадку екстремум розглядається у всіх точках відповідної сторони, а задача лінійного програмування буде мати нескінчену множину рішень. У цьому випадку говорять, що така задача має альтернативний оптимум і її розв’язок знаходиться за формулою

де , а , - оптимальні рішення у кутових точках області припустимих розв’язків.

Задача лінійного програмування може бути нерозв’язаною, коли обмеження, що її визначають, будуть суперечними.

5. Знайдемо координати точки екстремуму і значення цільової функції в ній.

 




Поделиться с друзьями:


Дата добавления: 2015-05-23; Просмотров: 378; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.