КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Примеры моделей для решения задач
01 J Продолжение
Необходимо обратить внимание на то, что при построении моделей к задачам 5—8 значение величины начального объекта не указывается ни в тексте задачи, ни на модели: оно не является искомым и его конкретная величина не имеет значения для решения задачи. Смысл анализа и решения этих задач заключается в определении характера и количественного выражения отношений между состояниями объекта («выигрыш — проигрыш»). Таким образом, в моделях, создаваемых для анализа текста и решения задач Ж. Верньё, отображается прежде всего структура задачи, в которой фиксируются состояния объекта, характер и величина отношений между состояниями. Такого рода модели позволяют материализовать схему анализа содержания задачи, ее математический смысл, установить на основе структуры, что является известным, а что необходимо определить, и выстроить последовательность действий для решения задачи. Использование тех же самых знаково-символических средств (окружность, вектор и др.) может не только приводить к созданию моделей, представляющих структурные компоненты задачи и их отношения, но и наглядно фиксировать последовательность действий в решении задачи. Это отличает их от описанных выше моделей Ж. Верньё, где действия и их последовательность выводятся из схемы отношений. Создание и фиксирование моделей достигается тем, что в язык символов вводятся специальные знаки известных и неизвестных компонентов задачи. Так, известные компоненты обозначаются сплошной линией, а неизвестные — пунктирной. Один из таких наборов символов может быть представлен в следующем виде: О — объект; () — искомое значение величины объекта; а, в — значения величин объекта; —>- — дано значение величины объекта; --*- — не дано или задано опосредованно значение величины объекта; /\ — вид арифметического действия: / 1 \ — сложение; / 2 \ — вычитание; / 3 \ — умножение; 4 \ — деление. В зависимости от отношений между величинами объектов модели могут иметь разный вид. 03 \
Дата добавления: 2015-05-08; Просмотров: 1318; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |