Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Пространственная система сил




Пространственная система сил. Понятие динамического винта.

2.6. Пространственная система сил Система сил называется пространственной, если линии их действия расположены в пространстве произвольным образом. Для пространственных систем сил остаются справедливыми все те положения, которые были сформулированы для плоской системы сил. Так, равнодействующая сходящихся сил в трехмерном случае Условие уравновешенности пространственной системы сходящихся сил может быть сформулировано в одной из трех форм: в векторной форме: в графической форме: силовой многоугольник должен быть замкнут. в аналитической форме: сумма проекций всех сил на каждую из осей декартовой системы координат должна быть равна нулю Момент силы относительно точки в трехмерном случае определяется несколько сложнее. Именно, момент МС(F) силы F относительно некоторой точки С равен векторному произведению радиус-вектора r, проведенного из точки С в точку приложения силы, на силу F: МС(F) = r х F. (2.10) В соответствии с правилами векторного произведения момент МС(F) представляет собой вектор, перпендикулярный плоскости, в которой лежат вектора r и F, и направленный так, что сила стремится повернуть тело против часовой стрелки, если смотреть со стороны вектора МС(F). Модуль момента силы равен: где h = r sin - расстояние от точки С до линии действия силы F,? - угол между радиус-вектором и силой (рис. 12). Оно, как и в плоском случае, называется плечом силы. Плечо силы не изменится, если точка приложения силы будет перемещаться вдоль линии ее действия. Поэтому величина момента МС(F) не зависит от того, где выбрана точка приложения силы. Из формулы (2.11) видно, что момент силы относительно точки равен нулю в двух случаях: либо, когда сила равна нулю, либо, когда точка С лежит на линии действия силы. Теорема Вариньона для пространственной системы сил имеет более общую форму, чем соотношение (2.5) для плоской системы сил: если произвольная пространственная система сил имеет равнодействующую, то момент равнодействующей относительно некоторой точки равен векторной сумме моментов всех сил системы относительно той же точки. Как известно из аналитической геометрии, векторное произведение (2.10) может быть записано через определитель где i, j, k – орты декартовой системы координат с центром в точке С; x, y, z – проекции радиус-вектора; Fx, Fy, Fz – проекции силы на соответствующие координатные оси. Равенство (2.12) можно рассматривать как разложение вектора МС(F) по осям координат. Следовательно, каждый сомножитель перед единичным ортом представляет собой проекцию вектора МС(F) на соответствующую ось. Моментом Мm(F) силы F относительно некоторой оси m называется скалярная величина, равная проекции на ось m момента силы F относительно какой-либо точки, взятой на этой оси. Для вычисления момента силы относительно оси удобно воспользоваться следующим несложным построением: сначала провести плоскость перпендикулярную оси m и найти точку их пересечения, затем спроектировать силу на эту плоскость. Момент проекции относительно точки пересечения и будет равен моменту силы F относительно оси m. Правило знака для момента Мm(F) такое же как и при вычислении момента силы относительно точки. Момент силы относительно оси равен нулю тогда, когда сила F лежит в одной плоскости с осью m. В самом деле, в этом случае либо проекция силы на плоскость, перпендикулярную оси, равна нулю (сила F параллельна оси m), либо линия действия проекции силы проходит через точку пересечения указанной плоскости и оси. Из определения момента силы относительно оси следует, что сомножители перед единичными ортами в формуле (2.12) равны моментам силы F относительно осей декартовых координат: Мх(F) = yFz – zFy; My(F) = zFx – xFz; Mz(F) = xFy – yFx. Эти формулы позволяют вычислить моменты силы относительно координатных осей, если известны координаты точки приложения силы и ее проекции на оси координат. Пара сил для трехмерного случая определяется также как и для плоского случая. Однако, плоскость действия пары и, следовательно, вектор ее момента могут быть ориентированы в пространстве произвольным образом. Отсюда следует, что две пары сил будут эквивалентны, если векторы их моментов равны друг другу. Следовательно, пару сил можно переносить в пространстве произвольным образом, оставляя плоскость ее действия параллельной самой себе. Если к телу приложены несколько пар сил с моментами М1, М2, …, М n, то момент равнодействующей пары равен векторной сумме моментов всех пар: n


 




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 1014; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.