Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Геометрический способ сложения сил




Геометрический способ определение равнодействующей системы сходящихся сил.

Аксиома о равновесии

Свободное тело – это тело, перемещение которого другими телами не ограничено. Если использовать приём образности мышления, то свободное тело мысленно можно представлять в виде воздушного шара, птицы в полёте, вертолёта, подводной лодки и т.п.

Понятие «равновесие свободного тела» (кратко: «равновесие тела») в полном своём объёме требует знаний кинематики, но в инженерной практике чаще предстаёт в форме покоя тела. Поэтому, при изучении статики можно считать, что «равновесие тела» - это его покой.

Аксиома о равновесии: если главные вектор и момент всех приложенных к телу сил равны нулю, то такое тело находится в равновесии. Справедливо и обратное утверждение – если тело находится в равновесии, то главные вектор и момент всех действующих на него сил равны нулю. Уместно вспомнить:

1) результат 12.18- равенство нулю главного момента не зависит от выбора центра, относительно которого он вычисляется;

2) результат 13.2 - при рассмотрении аксиомы о равновесии достаточно учитывать лишь внешние силы.

Называют:

уравновешенная система сил - это система сил с нулевыми главными вектором и моментом.

 


 

Геометрическая сумма (главный вектор) любой системы сил определяется или последовательным сло­жением сил системы по правилу параллелограмма, или построением силового многоугольника. Второй способ является более простым и удобным. Для нахождения этим способом суммы сил , , …, (рис. 14, a), откладываем от произвольной точки О (рис. 14, б) век­тор Oa, изображающий в выбранном масштабе cилу F 1, от точки a откладываем вектор , изображающий силу F 2, от точки b откла­дываем вектор bc, изображающий силу F 3 и т. д.; от конца m пред­последнего вектора откладываем вектор mn, изображающий силу F n.Соединяя начало первого вектора с концом последнего, получаем вектор = , изображающий геометрическую сумму или главный вектор слагаемых сил:

или

От порядка, в котором будут откладываться векторы сил, модуль и направление не зависят. Легко видеть, что проделанное по­строение представляет собою результат последовательного приме­нения правила силового тре­угольника.

Рис.14

Фигура, построенная на рис. 14, б, называется силовым (в общем случае векторным) многоугольником. Таким обра­зом, геометрическая сумма или главный вектор несколь­ких сил изображается замы­кающей стороной силового многоугольника, построенно­го из этих сил (правило сило­вого многоугольника). При построении векторного многоугольника следует помнить, что у всех слагаемых векторов стрелки должны быть направлены в одну сторону (по обводу многоугольника), а у вектора - в сторону противоположную.

Равнодействующая сходящихся сил. При изучении статики мы будем последовательно переходить от рассмотрения более простых систем сил к более сложным. Начнем с рассмотрения си­стемы сходящихся сил. Сходящимися называются силы, линии дей­ствия которых пересекаются в одной точке (см. рис. 14, а).

По следствию из первых двух аксиом статики система сходящихся сил, действующих на абсолютно твердое тело, эквивалентна системе сил, приложенных в одной точке (на рис. 14, а в точке А).

Последовательно применяя аксиому параллелограмма сил, прихо­дим к выводу, что система сходящихся сил имеет равнодей­ствующую, равную геометрической сумме (главному вектору) этих сил и приложенную в точке их пересечения. Следовательно, если силы , , …, сходятся в точке A (рис. 14, а), то сила, равная главному вектору , найденному построением силового мно­гоугольника, и приложенная в точке А, будет равнодействующей этой системы сил.

 

 


 




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 803; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.