КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Геометрический способ сложения сил
Геометрический способ определение равнодействующей системы сходящихся сил. Аксиома о равновесии Свободное тело – это тело, перемещение которого другими телами не ограничено. Если использовать приём образности мышления, то свободное тело мысленно можно представлять в виде воздушного шара, птицы в полёте, вертолёта, подводной лодки и т.п. Понятие «равновесие свободного тела» (кратко: «равновесие тела») в полном своём объёме требует знаний кинематики, но в инженерной практике чаще предстаёт в форме покоя тела. Поэтому, при изучении статики можно считать, что «равновесие тела» - это его покой. Аксиома о равновесии: если главные вектор и момент всех приложенных к телу сил равны нулю, то такое тело находится в равновесии. Справедливо и обратное утверждение – если тело находится в равновесии, то главные вектор и момент всех действующих на него сил равны нулю. Уместно вспомнить: 1) результат 12.18- равенство нулю главного момента не зависит от выбора центра, относительно которого он вычисляется; 2) результат 13.2 - при рассмотрении аксиомы о равновесии достаточно учитывать лишь внешние силы. Называют: уравновешенная система сил - это система сил с нулевыми главными вектором и моментом.
Геометрическая сумма (главный вектор) любой системы сил определяется или последовательным сложением сил системы по правилу параллелограмма, или построением силового многоугольника. Второй способ является более простым и удобным. Для нахождения этим способом суммы сил , , …, (рис. 14, a), откладываем от произвольной точки О (рис. 14, б) вектор Oa, изображающий в выбранном масштабе cилу F 1, от точки a откладываем вектор , изображающий силу F 2, от точки b откладываем вектор bc, изображающий силу F 3 и т. д.; от конца m предпоследнего вектора откладываем вектор mn, изображающий силу F n.Соединяя начало первого вектора с концом последнего, получаем вектор = , изображающий геометрическую сумму или главный вектор слагаемых сил: или От порядка, в котором будут откладываться векторы сил, модуль и направление не зависят. Легко видеть, что проделанное построение представляет собою результат последовательного применения правила силового треугольника. Рис.14 Фигура, построенная на рис. 14, б, называется силовым (в общем случае векторным) многоугольником. Таким образом, геометрическая сумма или главный вектор нескольких сил изображается замыкающей стороной силового многоугольника, построенного из этих сил (правило силового многоугольника). При построении векторного многоугольника следует помнить, что у всех слагаемых векторов стрелки должны быть направлены в одну сторону (по обводу многоугольника), а у вектора - в сторону противоположную. Равнодействующая сходящихся сил. При изучении статики мы будем последовательно переходить от рассмотрения более простых систем сил к более сложным. Начнем с рассмотрения системы сходящихся сил. Сходящимися называются силы, линии действия которых пересекаются в одной точке (см. рис. 14, а). По следствию из первых двух аксиом статики система сходящихся сил, действующих на абсолютно твердое тело, эквивалентна системе сил, приложенных в одной точке (на рис. 14, а в точке А). Последовательно применяя аксиому параллелограмма сил, приходим к выводу, что система сходящихся сил имеет равнодействующую, равную геометрической сумме (главному вектору) этих сил и приложенную в точке их пересечения. Следовательно, если силы , , …, сходятся в точке A (рис. 14, а), то сила, равная главному вектору , найденному построением силового многоугольника, и приложенная в точке А, будет равнодействующей этой системы сил.
Дата добавления: 2015-06-04; Просмотров: 803; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |