КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Результата измерений
Проверка нормальности закона распределения вероятности Цель занятия: проверить гипотезу о нормальности распределения результатов наблюдений. Оснащение: – методические указания по выполнению практической работы; – справочные данные; – микрокалькулятор. Работа рассчитана на 5 академических часов.
ОСНОВНЫЕ ПОЛОЖЕНИЯ Сходность результатов наблюдений можно оценить наиболее полно, если их распределение является нормальным. Поэтому исключительно важную роль играет проверка нормальности распределения. Поскольку ошибки искажают эмпирический закон распределения вероятности результата измерения, поскольку проверка предположения о его нормальности производится после исключения ошибок. При большом числе результатов наблюдений (n > 40) данная задача решается в следующем порядке: Весь диапазон полученных результатов наблюдений Xmax –Xmin разделяют на r интервалов шириной ΔXi (i = 1, 2,…, r) и подсчитывают частоты mi, равные числу результатов, лежащих в каждом i- м интервале, т.е. меньших или равных его правой и больших левой границы. Отношение где n – общее число наблюдений, называют частостями и представляют собой статистические оценки вероятностей попадания результатов наблюдений в i –й интервал. Распределение частостей по интервалу образует статистическое распределение результатов наблюдений. Если теперь разделить частость на длину интервала, то получим величины являющиеся оценками средней плотности распределения в интервале ΔXi. Отложим вдоль оси результатов наблюдений интервалы ΔXi (рис. 1) в порядке возрастания индекса i и на каждом интервале построим прямоугольник с высотой p*i. Полученный график называется гистограммой статистического распределения. Площадь всех прямоугольников равна единице.
Рис. 1. Гистограмма статистического распределения
При построении гистограмм рекомендуется пользоваться следующими правилами: 1. Число r интервалов выбирается в зависимости от числа наблюдений согласно рекомендациям ВНИИМ:
2. Длины интервалов ∆Xi удобнее выбирать одинаковыми. Однако если распределение крайне неравномерно, то в области максимальной концентрации результатов наблюдений следует выбирать более узкие интервалы. 3. Масштабы по осям гистограммы должны быть такими, чтобы отношение ее высоты к основанию составляло, примерно, 5:8. После построения гистограммы подбирают теоретическую плавную кривую распределения, которая, выражая все существенные черты статистического распределения, сглаживает все случайности, связанные с недостаточным объемом экспериментальных данных. Принципиальный вид теоретической кривой выбирают заранее, проанализировав метод измерения. Тогда определение аналитического вида кривой распределения сводится к выбору таких значений его параметров, при которых достигается наибольшее соотношение между теоретическим и статистическим распределением. Одним из методов решения этой задачи является метод моментов. При использовании этого метода параметрам теоретического распределения придают такие значения, при которых несколько важнейших моментов совпадают с их статистическими оценками. На основании построенной гистограммы, полученной при обработке опытных данных, строится гипотеза, состоящая в том, что результаты наблюдений подчиняются распределению Fx (x) с плотностью px (x). Для принятия или опровержения этой гипотезы выбирается некоторая величина
где ci – коэффициенты, называемые весами разрядов; Pi – теоретические вероятности, определяемые как где рх (х) - предполагаемая плотность распределения. Мера расхождения U является случайной величиной и, как показал К. Пирсон, независимо от исходного распределения подчиняется
где k = n – 1 – число степеней свободы распределения, на единицу меньшее числа измерений, на основании которого определяется оценка Мера расхождения U (по К. Пирсону) обозначается через
При заданной доверительной вероятности a = 1 - q, можно найти тот доверительный интервал Если вычисленная по опытным данным мера расхождения Описанная процедура проверки гипотезы говорит о том, что данное статистическое распределение является распределением с плотностью px(x), называется критерием согласия
Дата добавления: 2015-06-04; Просмотров: 425; Нарушение авторских прав?; Мы поможем в написании вашей работы! |