Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Момент силы и момент импульса




Вращение является составляющей большинства рассматриваемых в механике движений. Каждый день мы являемся свидетелями великого космического вращения. Данные последних теоретических исследований говорят, что всё вокруг и мы сами по свойствам напоминаем вращающиеся с большой частотой поля.

Динамические характеристикимомент силы и момент импульса, используемые при описании вращательного движения, играют в теории вращательного движения такую же большую роль, как ую сила и импульс играют в динамике поступательного движения.

 

Рис. 4.8

 

Известно, что передвинуть массивный предмет (например, ящик) вручную тяжело, гораздо легче передвинуть его с помощью длинной палки, трубы (лома), т.е. перекантовать с помощью рычага, причем, чем длинней этот рычаг, тем легче это сделать (прикладывается меньшая сила при большей длине рычага (см. рис. 4.8)). Вспомним знаменитое изречение Архимеда (ок. 286–212 гг. до н.э.): «Дайте мне точку опоры (и рычаг) и я переверну Землю».

Другой пример – взвешивание предметов на весах (см. рис. 4.9): при равных плечах (силы) весов li перевесит тот груз, масса которого mi больше, а если массы грузов равны, то перевесит груз, для которого плечо силы li больше.

Рис. 4.9

 

Следует различать момент силы и момент импульса относительно точки и относительно оси, в первом случае – это вектора, а во втором – проекции векторов (скаляры).

 

 

Рис. 4.10

 

Пусть дана точка О (полюс), относительно которой находится момент силы. Моментом силы относительно точки О называется векторное произведение (вектор) радиуса-вектора , проведенного из точки О в точку А приложения силы на вектор :

 

(4.16)

Модуль момента силы:

 

, (4.17)

где l=rsina – кратчайшее расстояние до линии АВ действия силы (рис.4.10), называемое плечо м силы l.

При этом вектор не изменится, если точку приложения силы перенести в любую другую точку, расположенную на линии действия силы, например в точку А/. При этом параллелограмм ОАВС перейдет в параллелограмм ОА/В/С. Оба параллелограмма имеют одинаковые основание и высоту, а следовательно, и площадь.

В отличие от полярных векторов (именно их изучают в школе), вектора, характеризующие вращательное движение , не имеют конкретной точки приложения (см. также лекция 1, п. 1), их называют скользящими. Так, вектор можно откладывать от любой точки параллельно одному из направлений, полученному в результате векторного произведения (по свойствам векторного произведения перпендикулярно плоскости, в которой лежат два перемножаемых вектора – ), направление вектора совпадает с направлением поступательного движения правого винта при его вращении от вектора к (в математике термин – «левая тройка»).

Главным моментом нескольких внешних сил,действующих на систему, относительно точки О называется сумма моментов их относительно этой точки (принцип независимости действия сил):

 

, (4.18)

 

где силы считают приложенными к одной точке О, что можно получить путем параллельного переноса векторов (часто в механике для удобства при решении задач силы рассматривают как приложенные к центру масс тела, хотя это не для всех сил так, пример – сила трения приложена к поверхности тела).

При вращении ТТ (системы материальных точек) необходимо учитывать только внешние силы, так как внутренние силы взаимодействия двух любых элементов ТТ (системы) всегда равны по модулю (величине) и противонаправлены вдоль одной прямой (их векторная (геометрическая) сумма равна нулю).

Аналогично вышесказанному можно определить момент импульса относительно точки (вектор ) и относительно оси (проекция вектора Lz):

 

, (4.19)

 

где – импульс (материальной) точки А, . Важно отметить, что моментом импульса относительно точки может обладать и тело, движущееся поступательно (достаточно наличие импульса и плеча). Тело, обладающее импульсом, может не обладать моментом импульса относительно одних точек (в отсутствие плеча) и обладать относительно других.

Единицы измерения [М]=Н×м (не путать с [А]=Дж=Н×м), а .

В общем случае (неколлинеарна) и , т.е. и , но если полюс (точка) О неподвижен, то импульс точки А сонаправлен с ее скоростью , тогда:

,

т.к. ,

то есть получают основное уравнение динамики вращательного движения:

. (4.20)

 

Этот закон остается справедливым и для системы материальных точек, в этом случае

 

и . (4.21)

 

Особенность вращения ТТ, по сравнению с системой несвязанных друг с другом материальных точек, заключается в том, что при вращении ТТ вокруг неподвижной оси все его элементы движутся по окружностям, причем угловая скорость вращения для них одинакова (а линейная различная). Поэтому естественным будет выразить вектор через скорость .

 

 

Рис. 4.11.

 

Разобьем ТТ (рис. 4.11), вращающееся относительно оси ОО /, на элементы (материальные точки). Момент импульса каждого элемента

.

С учетом равенства

.

В математике известно, что двойное векторное произведение имеет вид

,

т.е. .

Таким образом,

 

, (4.22)

 

где DIi – момент инерции i –го элемента.

Суммируя (интегрируя) по всем элементам, получают:

 

. (4.23)

 

С учетом формул (4.20) и (4.23) получаем еще одну форму записи основного уравнения динамики вращательного движения:

 

, (4.24)

 

где e – угловое ускорение.

При вращении ТТ (системы материальных точек) необходимо учитывать только внешние силы, так как внутренние силы взаимодействия двух любых элементов ТТ (системы) всегда равны по модулю (величине) и противонаправлены вдоль одной прямой (их векторная (геометрическая) сумма равна нулю). Согласно уравнению (4.21) для замкнутой системы имеем:

, (4.25)

т.е. .

Значит, для замкнутых систем выполняется закон сохранения момента импульса.

 




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 1349; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.028 сек.