Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Поля Галуа




Поле

Поле – это множество элементов замкнутое относительно двух бинарных операций – умножения и сложения. Под замкнутостью нужно понимать, что результат выполнения операций не выходит за пределы поля. Для поля выполняются следующие аксиомы:

1. Операция умножения обозначается как , сложение, как .

2. Результатом умножения и сложения элементов поля является элемент также из этого поля.

3. Для любого элемента поля не равного нулю, существует обратный элемент по сложению и умножению, так что и

4. Поле всегда содержит мультипликативную единицу 1, так что и аддитивную единицу 0, так что .

5. Для умножения и сложения выполняются правила ассоциативности, коммутативности и дистрибутивности.

 

Конечное поле или поле Галуа – это поле (далее конечное поле обозначено, как GF(p)), содержащее конечное число элементов. Нужно отметить, что аксиомы 1 – 5, справедливы, как для поля с конечным числом элементов, так и с бесконечным, но главное отличие конечных полей от бесконечных определяет аксиома 2. Из этого вытекает, что на понятие «умножение» и «сложение» накладывается ряд ограничений. Выполнение аксиомы 2 осуществляется выполнением по модулю некоторого числа p, называемым характеристикой поля.

Конечные поля существуют не при любом числе элементов, а только когда количество элементов поля – простое число p или его степень pm, где m – целое положительное число. В первом случае поле называется простым и обозначается, как GF(p), а во втором называется расширением простого поля и обозначается GF(pm).

Рассмотрим некоторое поле GF(p). Такое поле содержит p элементов, операции сложения и умножения над элементами этого поля производятся по модулю числа p. Рассмотрим расширение этого поля - GF(pm). Элементами расширения поля будут являться полиномы степени и меньше, с коэффициентами из поля GF(p). Приведем аналогию - простое поле содержит буквы алфавита, а расширение этого поля содержит слова определенной длины, составленные по некоторым правилам из букв, лежащих в основном поле.

 




Поделиться с друзьями:


Дата добавления: 2015-07-02; Просмотров: 1434; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.