КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Второй замечательный предел
. Если функция имеет предел при, то записывают . Или. Если функция имеет предел справа в точке, то записывают .
Определение. Число называется пределом функции при , если для любого положительного числа существует положительное число такое, что для всех , удовлетворяющих неравенству , выполняется неравенство
В теории математического анализа доказано, что: Данный факт носит название второго замечательного предела. Справка: – это иррациональное число. В качестве параметра может выступать не только переменная , но и сложная функция. Важно лишь, чтобы она стремилась к бесконечности. Пример 6 Найти предел Когда выражение под знаком предела находится в степени – это первый признак того, что нужно попытаться применить второй замечательный предел. Но сначала, как всегда, пробуем подставить бесконечно большое число в выражение , по какому принципу это делается, разобрано на уроке Пределы. Примеры решений. Нетрудно заметить, что при основание степени , а показатель – , то есть имеется, неопределенность вида : Данная неопределенность как раз и раскрывается с помощью второго замечательного предела. Но, как часто бывает, второй замечательный предел не лежит на блюдечке с голубой каемочкой, и его нужно искусственно организовать. Рассуждать можно следующим образом: в данном примере параметр , значит, в показателе нам тоже нужно организовать . Для этого возводим основание в степень , и, чтобы выражение не изменилось – возводим в степень : Когда задание оформляется от руки, карандашом помечаем: При этом сам значок предела перемещаем в показатель: Далее, отметки карандашом я не делаю, принцип оформления, думаю, понятен. Пример 7 Найти предел Внимание! Предел подобного типа встречается очень часто, пожалуйста, очень внимательно изучите данный пример. Пробуем подставить бесконечно большое число в выражение, стоящее под знаком предела: В результате получена неопределенность . Но второй замечательный предел применим к неопределенности вида . Что делать? Нужно преобразовать основание степени. Рассуждаем так: в знаменателе у нас , значит, в числителе тоже нужно организовать : Теперь можно почленно разделить числитель на знаменатель: Вроде бы основание стало напоминать , но у нас знак «минус» да и тройка какая-то вместо единицы. Поможет следующее ухищрение, делаем дробь трехэтажной: Таким образом, основание приняло вид , и, более того, появилась нужная нам неопределенность . Организуем второй замечательный предел . Наконец-то долгожданное устроено, с чистой совестью превращаем его в букву : Но на этом мучения не закончены, в показателе у нас появилась неопределенность вида , раскрывать такую неопределенность мы научились на уроке Пределы. Примеры решений. Делим числитель и знаменатель на : Готово. А сейчас мы рассмотрим модификацию второго замечательного предела. Напомню, что второй замечательный предел выглядит следующим образом: . Однако на практике время от времени можно встретить его «перевёртыш», который в общем виде записывается так: Пример 8 Найти предел Сначала (мысленно или на черновике) пробуем подставить ноль (бесконечно малое число) в выражение, стоящее под знаком предела: В результате получена знакомая неопределенность . Очевидно, что в данном примере . С помощью знакомого искусственного приема организуем в показателе степени конструкцию : Выражение со спокойной душой превращаем в букву : Еще не всё, в показателе у нас появилась неопределенность вида . Раскладываем тангенс на синус и косинус (ничего не напоминает?): Косинус нуля стремится к единице (не забываем помечать карандашом), поэтому он просто пропадает в произведении: А что такое и к чему оно стремится, нужно уже знать, иначе «двойка»!
Дата добавления: 2015-07-02; Просмотров: 1773; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |