КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Распределение давления во вращающейся жидкости
Размешивая чай в стакане, можно наблюдать поверхность вращающейся жидкости — она принимает параболическую форму. Представим себе стакан или другой цилиндрический сосуд на диске центробежной машины (рис. 296). Если диск вращается с угловой скоростью со, то через некоторое время все частицы жидкости будут двигаться по окружности так, что жидкость останется неподвижной относительно стенок стакана. Так как частицы по трубке тока движутся по кругу радиуса r, то давление в горизонтальной плоскости будет возрастать по мере удаления от оси вращения. Градиент давления вдоль радиуса r по (107.3) будет равен 1) (108.1) Заменим в (108.1) окружную скорость частицы v через w r и получим (108.2) это уравнение можно проинтегрировать по r: или (108.3) 1) Так как движение стационарное, то давление р в горизонтальной плоскости можно считать функцией только от r. Отсюда видно, что давление в горизонтальном сечении сосуда возрастает пропорционально квадрату расстояния от оси вращения. Как известно, давление в каждой точке жидкости должно быть одинаково по всем направлениям, поэтому и уровень жидкости должен повышаться с расстоянием от оси. Действительно, изменение давления в вертикальном направлении возникает только за счет веса жидкости; поэтому для того, чтобы частица жидкости покоилась относительно стакана, необходимо, чтобы уровень жидкости над кольцевой площадкой радиуса r 1был выше уровня жидкости в центре на величину h. Давление, создаваемое весом жидкости на горизонтали, проходящей через нижнюю точку свободной поверхности (точку О на рис. 296), равно hg, и оно должно равняться давлению rw2 r 21/2 где r 1 — расстояние рассматриваемой точки до оси. Поэтому или так как g=r g, где g — ускорение силы тяготения. Высота уровня жидкости растет пропорционально квадрату расстояния от оси вращения, т. е. свободная поверхность представляет собой параболоид вращения, как и наблюдается в опытах. Форма свободной поверхности показывает изменение давления вдоль радиуса. Но можно это проверить еще и таким образом: бросить в стакан с водой, вращающийся на центробежной машине, небольшие кусочки вещества тяжелее воды, все они через некоторое время расположатся внизу у стенки стакана. Кусочки вещества, плавающего на поверхности воды, будут собираться вблизи точки О. Интересно проследить, как будут вести себя в стакане кусочек свинца и шарик воска, связанные ниткой, (воск легче воды). Попробуйте в качестве упражнения сами проанализировать результат такого опыта. Каково будет распределение давления во вращаю- Рис. 296. щемся сосуде, если он закрыт со всех сторон? Каковы будут распределение давления и форма поверхности, если центр стакана с водой расположен не на оси машины? Отметим, что в рассмотренном случае движения частиц жидкости при вращении сосуда постоянная Бернулли сохраняет свою величину только для одной трубки тока и различна для разных линий тока. Вспоминая (102.5) и учитывая (108.3), можно записать для трубки тока так как трубки тока горизонтальны, то член, в который входит h, можно не принимать во внимание. Величина р 0 — давление на оси — зависит только от глубины и равна g Н (см. рис. 296). Следовательно, постоянная Бернулли (Э) изменяется и с глубиной, и с расстоянием от оси вращения.
Дата добавления: 2015-06-28; Просмотров: 4290; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |