КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Истечение жидкости или газа, находящихся под давлением в сосуде
Если жидкость или газ находятся в сосуде под давлением, много большим, чем давление, создаваемое весом жидкости, то изменениями давления по высоте столба жидкости можно пренебречь и считать, что истечение подчиняется тем же законам, что и истечение жидкости, находящейся в замкнутом сосуде под давлением p н.Поэтому можно просто определить скорость истечения воды из котла, в котором вода находится под постоянным давлением
пара в несколько десятков атмосфер, или скорость истечения газа из баллона (рис. 292), в котором давление поддерживается постоянным при помощи компрессора. В этих случаях можно считать константу в уравнении Бернулли постоянной по всему объему текущего газа или жидкости и равной р н,давлению в сосуде, так как скоростью течения в сосуде можно пренебречь вследствие того, что сечение сосуда S много больше сечения отверстия s. Скорость истечения воды из котла будет равна
как легко вычислить из уравнения (102.5). Для газа уже нельзя определить скорость по формуле (102.5), ибо плотность газа r будет изменяться при движении частицы газа к отверстию. Изменение давления вдоль трубки тока можно при стационарном течении записать по (101.5) так:
Но плотность r теперь уже зависит от величины давления р. При подходе частиц к отверстию давление должно падать: ведь частицы ускоряются в направлении движения. И величина скорости будет зависеть от того, по какому закону изменяется плотность с изменением давления. Вообще зависимость между давлением и плотностью довольно сложная, так как она связана еще и с изменением температуры вдоль трубки тока. Однако во многих случаях, когда частица движется достаточно быстро, можно считать, как показывает опыт, что давление и плотность связаны законом адиабаты
где c— показатель адиабаты, зависящий от природы газа (для воздуха он равен 1,4), а rн — плотность газа в сосуде. Закон адиабаты (105.3) следует из того, что во время расширения частицы не происходит обмена теплом с окружающими частицами. Подставим зависимость плотности от давления в (105.2) и, преобразуя, получим
Рис. 292. Это выражение можно проинтегрировать вдоль линии трубки тока. Если давление в баллоне р н,а давление в пространстве, куда вытекает газ, равно р 0,то интегрировать по давлению нужно от р ндо р 0, а по скорости — от нуля до v 0— скорости на выходе:
Выполняя интегрирование и преобразуя, получаем скорость истечения:
Если бы мы полагали газ несжимаемым, то из (105.1) получили бы
Скорость истечения газа из баллона под давлением можно записать так:
Теперь легко оценить ошибку, какую допускают при расчетах, в которых газ полагают несжимаемым; для этого нужно только оценить величину корня в (105.7) при данной разности давлений. Можно убедиться непосредственным расчетом, что при очень маленькой разнице в давлениях р ни р 0,равной, например, нескольким процентам, величина корня будет очень мало отличаться от единицы. Тогда можно рассчитывать скорость и течение газа, как для несжимаемой жидкости. Определим точнее величину ошибки, которую мы делаем, принимая воздух несжимаемым при давлении, близком к атмосферному. Допустим, что разность давлений в сосуде и вне его составляет 10% от атмосферного, и положим, что давление в сосуде р н равно 1 атм, а вне его р 0=0,9 атм. Какова была бы скорость истечения, если бы воздух был несжимаемой жидкостью? Подставляя в (105.6) значение плотности воздуха
и величину атмосферного давления
получим
Вычислим теперь значение радикала в (105.7). Обозначим
(c-1)/c =а, тогда радикал будет иметь такой вид:
разлагаем (1-D) а в ряд Тейлора около единицы и получаем
Подставляя это выражение в радикал и преобразуя, получаем
Подставляя сюда D=0,1 и c=1,4, находим, что ошибка в определении скорости составляет примерно 2%. Следовательно, в тех случаях, когда не нужно высокой точности при определении скорости при разностях давлений, меньших 10% атмосферного, можно пренебречь сжимаемостью воздуха и считать течение воздуха течением несжимаемой жидкости. Очевидно, что при такой малой разности давлений вдоль трубки тока плотность будет изменяться так же мало; процентное отношение изменений давления и плотности будет примерно тем же. Действительно, при адиабатическом расширении газа на незначительную величину относительное изменение давления будет в c раз больше относительного изменения плотности: ведь из (105.3) получаем dp/p =c d r/r. Небольшое изменение плотности вдоль трубки тока не оказывает влияния на величину скорости, а следовательно, и на характер течения.
Дата добавления: 2015-06-28; Просмотров: 5983; Нарушение авторских прав?; Мы поможем в написании вашей работы! |