Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Абсолютное движение точки





Движение точки М относительно неподвижной системы координат называют абсолютным. Соответственно, траекторию (рис. 8.1), скорость и ускорение относительно неподвижной системы координат называют абсолютными.

Абсолютная скорость и абсолютное ускорение точки обозначается индексом а:, . Положение точки М относительно неподвижной системы координат O1x1y1z1 определяется радиус-вектором . Введем орты неподвижной системы координат и разложим по ним радиус-вектор :

.

Тогда уравнения абсолютного движения точки имеют вид

, , . (8.3)

Исключив в уравнениях (8.3) время , получим уравнения траектории абсолютного движения точки (рис.8.1).

Чтобы найти скорость абсолютного движения точки, необходимо продифференцировать вектор-функцию :

.

Раскладывая вектор по ортам

и, сравнивая обе записи вектора , получим

, , .

Аналогично, ускорение абсолютного движения точки равно:

.

Раскладывая вектор по ортам

и сравнивая обе записи вектора , получим

, , .

 





Дата добавления: 2014-01-03; Просмотров: 584; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.002 сек.