Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод интегрирования по частям





Основные свойства неопределенного интеграла

1. Производная от неопределенного интеграла равна подынтегральной функции, т.е. если Имеем

.

Итак, из справедливости формулы (1) следует справедливость формулы (2), которая получается из первой формулы формальной заменой на На основании этого свойства получаем обобщенную таблицу простейших интегралов:

 

 

и т.д.,

где -любая дифференцируемая функция .

Пример. .

Заменяя на получим:

 

 

Отсюда становится понятной важность умения приводить данное дифференциальное выражение к виду: где есть некоторая функция от и - функция более простая для интегрирования, чем

Отметим ряд преобразований дифференциала, полезных для дальнейшего:

1) где - постоянная величина

2) где постоянная

3)

4)

5)

Вообще докажем, что в этом случае имеет место следующее равенство:

 

Правую часть равенства (2) будем дифференцировать по как сложную функцию, где - промежуточный аргумент. Зависимость от выражается равенством (1), при этом Таким образом, имеем:

 

 

Что и требовалось доказать.

Функцию следует выбирать так, чтобы можно было вычислить неопределенный интеграл, стоящий в правой части равенства (2). Иногда целесообразнее подбирать замену переменного не в виде , а

Пример 1.

Сделаем подстановку тогда и, следовательно,

 

Пример 2.

Сделаем подстановку тогда

 

 

 

Пусть и - две дифференцируемые функции от Тогда, как известно, дифференциал произведения вычисляется по следующей формуле:

Отсюда, интегрируя, получаем: или

 

Это формула интегрирования по частям.

Выведенная формула показывает, что приводится к который может оказаться более простым, чем исходный, или даже табличным. Умение разбивать разумным образом данное подынтегральное выражение на множители и вырабатывается в процессе решения задач. Сейчас же можно лишь сказать, что в качестве обычно выбирается функция, которая упрощается дифференцированием, в качестве - оставшаяся часть подынтегрального выражения, включая

Пример.

 

 

При определении функции по дифференциалу мы можем брать любую произвольную постоянную, так как в конечный результат она не входит, что легко проверить, подставив в равенство (1) вместо выражение Поэтому удобно считать эту постоянную равной нулю.

Правило интегрирования по частям применяется во многих случаях. Так, например, интегралы вида некоторые интегралы, содержащие обратные тригонометрические функции, вычисляются с помощью интегрирования по частям.

В некоторых случаях для сведения данного интеграла к табличному формула интегрирования по частям применяется несколько раз.

Иногда искомый интеграл определяется из алгебраического уравнения, получающегося с помощью интегрирования по частям.

Пример.

 

 

 

 

 

Аналогичным образом можно вычислить следующие два интеграла.

 

 

 

Лекция 9.





Дата добавления: 2014-01-03; Просмотров: 193; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.002 сек.