Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Обратная матрица




Формула вычисления элементов обратной матрицы: .

Алгоритм нахождения .

1. Проверить невырожденность с помощью определителя.

2. Составить матрицу из дополняющих миноров Mij.

3. Изменить знаки в шахматном порядке, то есть домножить на (-1)i+j, где i,j - номера строки и столбца.

4. Транспонировать полученную матрицу.

5. Поделить на определитель исходной матрицы.

Задача 3. Найти обратную матрицу .

Решение. Сначала ищем определитель. Так как матрица треугольная, то достаточно перемножить числа по диагонали. .

Строим матрицу, состоящую из дополняющих миноров.

Зачёркиваем ту строку и тот столбец, где находится элемент, и остаётся минор 2 порядка из 4 элементов.

 

На схеме показано, что именно надо зачеркнуть:

= = .

Теперь надо сменить знаки в шахматном порядке, т.е. переходим от миноров к алгебраическим дополнениям. Обведено красным, где надо менять знак. Ясно, что 0 остаётся 0, там знак менять нет смысла.

Получили: = .

Транспонируем эту матрицу, то есть бывшие строки запишем по столбцам.

= . И осталось разделить на .

Ответ. .

 

Задача 4. Найти ранг матрицы .

Решение. Поменяем 1-ю и 2-ю строки, так чтобы в верхнем левом углу было число 1. Это удобнее для преобразований к треугольной форме методом Гаусса. Ранг при этом не меняется. После этого, вычтем 1-ю строку с коэффициентом 1 либо 4 из последующих, так, чтобы обнулить всё ниде углового элемента.

Ещё мы поменяли 2 и 3 строку, чтобы продолжить метод Гаусса без излишних дробных коэффициентов.

Теперь 2-ю строку, домноженную на 10, прибавим к 3-й.

.

Итак, исходная матрица сводится к такой, в которой уже есть треугольная сруктура в первых трёх столбцах.

Очевидно, что обведённый минор равен 46, не равен 0. Он 3-го порядка, поэтому ранг равен 3.

Ответ: .

 

 




Поделиться с друзьями:


Дата добавления: 2017-01-14; Просмотров: 135; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.