КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
ВОПРОСЫ. 1. Закон Кулона. Теорема Гаусса в интегральной и дифференциальной формах
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 14 1. Закон Кулона. Теорема Гаусса в интегральной и дифференциальной формах. Теорема о циркуляции для электростатического поля. Потенциал. Уравнение Пуассона. Зако́н Куло́на — это закон, описывающий силы взаимодействия между неподвижными точечными электрическими зарядами. Современная формулировка[1]: Сила взаимодействия двух точечных зарядов в вакууме направлена вдоль прямой, соединяющей эти заряды, пропорциональна их величинам и обратно пропорциональна квадрату расстояния между ними. Она является силой притяжения, если знаки зарядов разные, и силой отталкивания, если эти знаки одинаковы. Важно отметить, что для того, чтобы закон был верен, необходимы: Точечность зарядов, то есть расстояние между заряженными телами должно быть много больше их размеров. Впрочем, можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными непересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии; Их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд; Расположение зарядов в вакууме. Однако с некоторыми корректировками закон справедлив также для взаимодействий зарядов в среде и для движущихся зарядов.[2] В векторном виде в формулировке Ш. Кулона закон записывается следующим образом: где — сила, с которой заряд 1 действует на заряд 2; — величина зарядов; — радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами — ); — коэффициент пропорциональности. В СГСЭ единица измерения заряда выбрана таким образом, что коэффициент k равен единице. В Международной системе единиц (СИ) одной из основных единиц является единица силы электрического тока ампер, а единица заряда — кулон — производная от него. Величина ампера определена таким образом, что k = c2·10−7 Гн/м = 8,9875517873681764·109 Н·м2/Кл2 (или Ф−1·м). В СИ коэффициент k записывается в виде: где ≈ 8,85418781762·10−12 Ф/м — электрическая постоянная. В однородном изотропном веществе в знаменатель формулы добавляется диэлектрическая проницаемость среды ε. В СГСЭ В СИ Теорема Гаусса (закон Гаусса) — один из основных законов электродинамики, входит в систему уравнений Максвелла. Выражает связь (а именно равенство с точностью до постоянного коэффициента) между потоком напряжённости электрического поля сквозь замкнутую поверхность и зарядом в объёме, ограниченном этой поверхностью. Применяется отдельно для вычисления электростатических полей. Аналогичная теорема, также входящая в число уравнений Максвелла, существует и для магнитного поля (см. ниже). Также теорема Гаусса верна для любых полей, для которых верен закон Кулона или его аналог (например, для ньютоновской гравитации). При этом она является, как принято считать, более фундаментальной, так как позволяет в частности вывести степень расстояния[1] в законе Кулона «из первых принципов», а не постулировать ее (или не находить эмпирически). В этом можно видеть фундаментальное значение теоремы Гаусса (закона Гаусса) в теоретической физике. Существуют аналоги (обобщения) теоремы Гаусса и для более сложных полевых теорий, чем электродинамика. Общая формулировка: Поток вектора напряжённости электрического поля через любую произвольно выбранную замкнутую поверхность пропорционален заключённому внутри этой поверхности электрическому заряду.
где — поток вектора напряжённости электрического поля через замкнутую поверхность . — полный заряд, содержащийся в объёме, который ограничивает поверхность . — электрическая постоянная. Данное выражение представляет собой теорему Гаусса в интегральной форме. Замечание: поток вектора напряжённости через поверхность не зависит от распределения заряда (расположения зарядов) внутри поверхности.
Здесь — объёмная плотность заряда (в случае присутствия среды — суммарная плотность свободных и связанных зарядов), а — оператор набла. Теорема Гаусса может быть доказана как теорема в электростатике исходя из закона Кулона (см. ниже). Формула однако также верна в электродинамике, хотя в ней она чаще всего не выступает в качестве доказываемой теоремы, а выступает в качестве постулируемого уравнения (в этом смысле и контексте ее логичнее называть законом Гаусса [2]. Для поля в диэлектрической среде электростатическая теорема Гаусса может быть записана еще и иначе (альтернативным образом) — через поток вектораэлектрического смещения (электрической индукции). При этом формулировка теоремы выглядит следующим образом: поток вектора электрического смещения через замкнутую поверхность пропорционален заключённому внутри этой поверхности свободному электрическому заряду:
Важный комментарий [показать] В дифференциальной форме:
Дата добавления: 2015-08-31; Просмотров: 2470; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |