Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Примеры решения задач. 1.Определите радиус частиц гидрозоля золота, если после установления диффузионно-седиментационного равновесия при 293 К на высоте Н = 8,56 см концентрация




1.Определите радиус частиц гидрозоля золота, если после установления диффузионно-седиментационного равновесия при 293 К на высоте Н = 8,56 см концентрация частиц изменяется в е раз. Плотность золота ρ = 19,3 г/см3, плотность воды ρ 0 = 1,0 г/см3.

Решение. Распределение частиц по высоте при установлении диффузионно-седиментационного равновесия описывается гипсометрическим уравнением (5) Согласно условию задачи, n = n0/e и ln n/n0 = -1С учетом этого выражение для радиуса частиц принимает вид

 

2.Частицы бентонита дисперсностью D = 0,8 мкм-1 оседают в водной среде под действием силы тяжести. Определите время оседания τ1 на расстояние h = 0,1 м, если плотность бентонита ρ = 2,1 г/см3, плотность среды ρ о= 1,1 г/см3, вязкость среды η = 2·10-3 Па·с. Во сколько раз быстрее осядут частицы на то же расстояние в центробежном поле, если начальное расстояние от оси вращения h0 = 0,15 м, а скорость вращения центрифуги п = 600 об/с.

Решение. Из уравнения Стокса (9) выражаем

, где

с

Для частиц, оседающих в центробежном поле, справедливо соотношение

 

где h2 = h1 + h, ω =2πn - угловая скорость вращения центрифуги.

Время оседания в центробежном поле составит:

с

Искомое соотношение равно

 

3 Какое центробежное ускорение должна иметь центрифуга, чтобы вызвать оседание частиц радиусом r = 5·10-8 м и плотностью ρ = 3·103кг/м3 в среде с плотностью ρ 0=1·103 кг/м3 и вязкостью η = 1·10-3 Па·с при T = 300 К?

Решение. Для того чтобы происходило оседание частиц, необходимо преобладание скорости оседания над скоростью теплового движения примерно на порядок. Для оценки скорости теплового движения частиц рассчитывают средний сдвиг за 1 с. По уравнению (2)

Задаются скоростью оседания uц = 3·10-5 м/с и находится центробежное ускорение

или

4.Расчитать и построить интегральную и дифференциальную кривые распределения частиц пека в воде. В результате графической обработки седиментационной кривой получены данные, помещенные в табл 5.1; плотность песка ρ = 2,1·103 кг/м3; плотность воды ρ0 = 1·103 кг/м3; высота оседания H = 0,1 м; вязкость η = 1·10-3 Па·с

Таблица 1. Данные седиментационного анализа суспензии песка в воде

Время оседания для точки, к которой проведена касательная, t, мин Содержание фракции Q, % Нарастающее суммарное содержание частиц, % Эквивалентный радиус r·106, м
  12,9   19,0
  42,3 87,1 11,0
  17,8 44,8 8,0
  27,0 27,0 6,6
  13,7 13,7 6,0
  7,7 7,7 5,4
  2,0 2,0 4,9

Решение: По уравнению (12) рассчитывают по экспериментальным данным радиус частиц. Для построения интегральной кривой подсчитывают нарастающее суммарное содержание частиц, начиная с самых мелких. По полученным данным (см. табл 1. строят интегральную кривую распределения частиц. Обрабатывая интегральную кривую, получают данные для построения дифференциальной кривой, помещенные в таблице.2.

Таблица 2. Данные для построения дифференциальной кривой распределения частиц песка в воде

r ·106, м Δ r ·106, м ΔQ, % ΔQ,/ Δ r
  - - -
       
       
       
       
       
       
      0,5
    0,5 0,25

Интегральная и дифференциальная кривые распределения изображены на рис.1.

Рис 1.Интегральная и дифференциальная кривые.

 




Поделиться с друзьями:


Дата добавления: 2015-08-31; Просмотров: 8436; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.