Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Задачи для практических занятий и самостоятельной работы




Распределение Пуассона

Гипергеометрическое распределение

Формальная модель – имеется урна, в которой a белых и b черных шаров; из урны вынимается n шаров. X – число белых шаров среди вынутых.

Ряд распределения

,

где ; .

Моменты: ; .

 

Гипергеометрическое распределение, a=5; b=95; n=5. Таблица 4.2.

M            
Pm 0,7696 0,2114 0,0184 0,0006    

 

Гипергеометрическое распределение применяется на практике при решении задач, связанных с контролем продукции. При и гипергеометрическое распределение приближается к биноми­нальному с параметрами: n – величина выборки, .

 

Формальная модель – получается предельным переходом из бино­минальной модели (4.1), если , , . На практике распространено задание , где – интенсив­ность потока (число событий за единицу времени), – длина интер­вала. X – число событий на участке длиной . Ряд распределения , где ; .

Моменты: ; .

Пример распределения Пуассона дан в табл. 4.3.

Распределение Пуассона . Таблица 4.3.

  a=0,1 a=0,9 a=7,0
  0,9048 0,0905 0,0045 0,0002 0,0000 - - - - - - - - - - - - - - - - 0,4066 0,3659 0,1647 0,0494 0,0111 0,0020 0,0003 0,0000 - - - - - - - - - - - - - 0,0009 0,0064 0,0223 0,0521 0,0912 0,1277 0,1490 0,1490 0,1304 0,1014 0,0710 0,0452 0,0263 0,0142 0,0071 0,0033 0,0014 0,0006 0,0002 0,0001 0,0000

 

1. Построить графически с помощью таблиц законы распределения (ряды, плотности вероятностей, функции распределения) случайных величин.

Открыть приложение MS Excel.

В первой строке записать число успехов опыта. Например, от 0 до 5 (рис.4.2).

Во второй строке - биномиальный закон распределения. Для этого необходимо поставить курсор в ячейку, стоящую ниже числа успехов (b2) и вызвать статистическую функцию БИНОМРАСП. Ввести следующие аргументы:

- число s: номер ячейки со случайной величиной (b1);

- испытания: число испытаний (5);

- вероятность: любое число от 0 до 1 (0,5);

- интегральный: логическое значение, определяющее вид функции; интегральная функция распределения (ЛОЖЬ) (вторая строка) или функция плотности распределения (ИСТИНА). (третья строка)

 

в четвертой строке – геометрический ряд распределения, описываемый формулой . (Этот закон не указан в списке стандартных функций Excel, поэтому его нужно задавать пользователю по формуле). Функция СТЕПЕНЬ (p; n)*q, где p – вероятность (в нашем случае – 0,6), n – номер ячейки (b1), q=1- p (в нашем случае – 0,4);

в пятой строке – гипергеометрический ряд распределения, предусматривающий функцию ГИПЕРГЕОМЕТ (количество успешных испытаний в выборке; размер выборки; количество успешных испытаний в генеральной совокупности; размер генеральной совокупности). В нашем случае формула выглядит так: ГИПЕРГЕОМЕТ (b1;5;5;100);

в шестой строке – ряд распределения Пуассона (функция плотности распределения) ПУАССОН (количество событий; среднее; интегральный) в нашем случае ПУАССОН(b1;1,6;ложь);

в седьмой строке – ряд распределения Пуассона (интегральная функция распределения) ПУАССОН (b1; 1,6; истина).

Для того, чтобы графически отобразить интегральный закон распределения (функцию распределения), необходимо сначала вычислить его аналитически вместо ряда распределения. Ввести матрицу А (n´n), где n – число успехов опыта (в примере – 6). Матрица изображена на листе Excel в диапазоне (A10:F15). В диапазоне (H10:H15) – транспонированная матрица ряда геометрического распределения. Для умножения матриц используем функцию МУМНОЖ (массив 1; массив 2). В нашем случае - МУМНОЖ (A10:F15;H10:H15) в ячейке I10. Результирующая матрица получается так – выделим место под нее, активизируем строку формул и нажмем комбинацию клавиш Ctrl+Shift+Enter.

Для геометрического закона построить функцию распределения и плотность распределения.

То же самое проделать для гипергеометрического распределения и для распределения Пуассона.

 

Рис. 4.2. Изучение законов распределения дискретных случайных величин

 

2. Отметить значения, соответствующие математическому ожиданию, моде, медиане и отклонениям от математического ожидания.

3. Найти вероятность попадания значения СВ в заданный интервал.




Поделиться с друзьями:


Дата добавления: 2017-01-14; Просмотров: 140; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.