Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Вегетативная нервная система




Структура и функциональное значение различных отделов центральной нервной системы.

План:

I. Физиология спинного мозга

II. Строение и физиология важнейших структур головного мозга

III. Вегетативная нервная система

Спинной мозг располагается в позвоночном канале, имеет сегментарное строение (состоит из 31 сегмента) и представляет собой несколько сплюснутый спереди назад цилиндрический тяж длиной около 45 см, с очень узкой полостью, называемой центральным каналом. Вверху под большим затылочным отверстием он переходит в головной мозг, а на уровне 1-2 поясничных позвонков заканчивается мозговым конусом, от которого идет концевая нить, присоединяющаяся к надкостнице копчика. Это обеспечивает фиксацию спинного мозга. Вместе с концевой нитью в канале позвоночника проходят пояснично-крестцовые корешки, которые, прежде чем выйти из позвоночного канала, проходят вдоль спинного мозга в нисходящем направлении. В самом нижнем отделе они образуют конский хвост, который состоит из пояснично-крестцовых корешковых волокон и конечной нити спинного мозга.

Спинной мозг имеет два утолщения, образованные скоплением нервных клеток, иннервирующих конечности: шейное (на уровне V-VI шейных сегментов мозга) и поясничное (в области III-IV сегментов).

В спинном мозге различают серое и белое вещество. Серое вещество, образованное телами нервных клеток, расположено вокруг центрального канала и имеет форму, напоминающую букву «Н» (“бабочка”).

Белое вещество спинного мозга, образованное длинными отростками нервных клеток, делится на передние, задние и боковые столбы, в которых расположены проводящие пути. Проводящие пути, по которым возбуждение проходит от рецепторов к нейронам спинного мозга и далее к вышележащим отделам головного мозга, называют восходящими, а те, по которым возбуждение передается от различных отделов головного мозга к рабочим органам, - нисходящими.

Функциональное значение спинного мозга заключается в том, что он проводит возбуждение в восходящем и нисходящем направлениях и осуществляет рефлекторную функцию. Спинной мозг связывает головной мозг с туловищем и конечностями.

Глубокое нарушение функций организма, наступающее во время шока, объясняется снятием влияний головного мозга и ретикулярной формации на спинно-мозговые функции.

Спинной мозг вместе с головным мозгом осуществляет регуляторную функцию. Он участвует в осуществлении всех сложных двигательных и вегетативных функций организма, которые могут быть результатом рефлекторной деятельности спинного мозга или вышележащих отделов головного мозга.

К типичным спинно-мозговым рефлексам относятся:

· двигательные: сгибательные, разгибательные, сухожильные, миотатические, тонические;

· ритмические: шагание, попеременное сгибание и разгибание конечности и др.;

· тонические, направленные на поддержание определённой позы, они могут длительно осуществляться без утомления. Их осуществление связано с координационными механизмами спинного мозга и вышележащих отделов головного. В спинном мозге располагается ряд центров вегетативной нервной системы: сосудодвигательные и потоотделительные (в боковых рогах грудных сегментов), центр глазной мускулатуры (нижний шейный и два верхних грудных сегмента), центры, регулирующие работу сердца и бронхов (пять верхних грудных сегментов), мочеиспускания и дефекации, центры, регулирующие деятельность органов (крестцовые сегменты).

Спинной мозг новорожденного имеет длину около 14 см. К 2 годам длина спинного мозга достигает 20 см, а к 10 годам, по сравне­нию с периодом новорожденности, удваивается. Быстрее всего растут грудные сегменты спинного мозга. Масса спинного мозга у новорожденного составляет около 5,5 г, у детей 1 -го года — око­ло 10 г. К 3 годам масса спинного мозга превышает 13 г, к 7 годам равна примерно 19 г. У новорожденного центральный канал шире, чем у взрослого. Уменьшение его просвета происходит главным образом в течение 1 — 2 годов, а также в более поздние возраст­ные периоды, когда наблюдается увеличение массы серого и бе­лого вещества. Объем белого вещества спинного мозга возраста­ет быстро, особенно за счет собственных пучков сегментарного аппарата, формирование которого происходит в более ранние сроки по сравнению со сроками формирования проводящих пу­тей, образующих надсегментарный аппарат мозга.

Головной мозг находится в полости мозгового отдела черепа. Верхняя вентральная поверхность головного мозга по форме соответствует внутренней вогнутой поверхности свода черепа. Нижняя поверхность - основание головного мозга, имеет сложный рельеф, соответствующий черепным ямкам внутреннего основания черепа.

Масса мозга взрослого человека колеблется от 1100 до 2000 г. На протяжении от 20 до 60 лет масса и объем мозга остаются максимальными и постоянными для каждого индивидуума.

Головной мозг имеет три наиболее крупные составные части. Это парные полушария большого мозга, мозжечок и мозговой ствол. Анатомически головной мозг состоит из нескольких отделов: продолговатый мозг, задний, к которому относится мост и мозжечок, средний, промежуточный и конечный мозг.

Продолговатый мозг является продолжением спинного и в нижней своей части сходен с ним по строению и форме.

Функции продолговатого мозга связаны с наличием в нем ядер IХ-ХII пар черепно-мозговых нервов: языкоглоточного (IХ), блуждающего (Х), добавочного (ХI) и подъязычного (ХII). Ядра серого вещества, расположенные в продолговатом мозге, регулируют деятельность почти всех внутренних органов. Продолговатый мозг регулирует слюноотделение, секреторную функцию желудочных желез, поджелудочных желез кишечника, влияет на деятельность слёзных и потовых желез, принимает участие в осуществлении тонических рефлексов статических и статокинетических. Статические рефлексы обеспечивают сохранение определённой позы человека, а статокинетические – его перемещение в пространстве.

Мост располагается впереди продолговатого мозга и имеет вид поперечного вала. Его функции связаны с находящимися в нём ядрами V-VIII пар черепно-мозговых нервов: преддверно-улиткового (VIII пара), лицевого, промежуточного (VII), отводящего (VI), тройничного (V). Ядра этих нервов лежат в ретикулярной формации. Мост принимает участие в регуляции различных сложных двигательных актов, таких, как сосательный рефлекс, жевание, глотание, кашель, чихание, а также в регуляции мышечного тонуса и равновесия тела. При отделении этих структур от среднего мозга наступает резкое повышение мышечного тонуса.

Мозжечок расположен над мостом и продолговатым мозгом. Он состоит из непарного, серединно расположенного червя и двух полушарий.

Поверхность полушарий мозжечка покрыта серым веществом, образующим кору. Кора мозжечка имеет борозды, которые делят его на отдельные дольки. В коре различают три слоя нервных клеток: наружный, средний и внутренний. Нейроны мозжечка имеют разнообразное строение и широкие связи между собой и другими отделами центральной нервной системы, чем обеспечивается их постоянная активность и участие мозжечка в регуляции различных функций. Под корой мозжечка находится белое вещество, в котором располагаются четыре пары ядер. Самое крупное ядро – зубчатое.

Мозжечок оказывает влияние на различные двигательные и вегетативные функции.

После удаления мозжечка наступают глубокие расстройства двигательных актов: нарушаются рефлексы положения тела, статические рефлексы и произвольные решения. У человека при нарушении функций мозжечка также наступает расстройство двигательных актов. К ним относятся: астения, астазия, атаксия, дистония и дисметрия.

Астения заключается в снижении силы мышечных сокращений, появлении утомляемости, которую можно объяснить повышением энергетических затрат организма, так как движения производятся неэкономично, с участием большого количества мышц.

Астазия – утрата способности мышц к длительному тетаническому сокращению, вследствие чего конечности и голова непрерывно дрожат или качаются.

Атаксия – нарушение точности движений. Человек не может сразу взять карандаш со стола, его рука попадает на стол рядом с карандашом.

Дисметрия – несоответствие между интенсивностью мышечного сокращения и задачей выполняемого движения.

Дистония – нарушение тонуса мышц, причём он может быть, как понижен, так и повышен.

Нарушения движений, наступающие при поражениях мозжечка, могут быть компенсированы корой полушарий. Мозжечок принимает участие в регуляции вегетативных функций, оказывая облегчающее или угнетающее влияние на сердечно-сосудистую систему, дыхание, пищеварительный тракт, терморегуляцию.

Средний мозг расположен над мостом и представлен ножками мозга и четверохолмием. Ножки мозга состоят из основания и покрышки, между которыми находится чёрная субстанция, содержащая сильно пигментированные клетки. В покрышке располагаются ядра блокового (IV пара) и глазодвигательного (III пара) нервов.

Через средний мозг проходят восходящие пути к зрительному бугру, большим полушариям и мозжечку и нисходящие пути к продолговатому и спинному мозгу. В среднем мозге располагается большое количество нейронов ретикулярной формации.

В четверохолмии выделяют верхние, или передние, и нижние, или задние, бугры четверохолмий.

Функциональное значение среднего мозга связано в основном с ядрами четверохолмия. В верхних буграх четверохолмия расположены центры ориентировочных рефлексов, возникающих в ответ на зрительные раздражения, поэтому этот отдел называют первичными зрительными центрами. Верхние бугры четверохолмия принимают участие в осуществлении сложных зрительных рефлекторных реакций, например зрачковых рефлексов.

Нижние бугры четверохолмия регулируют ориентировочные рефлексы, возникающие в ответ на звуковые раздражения. Их называют первичными слуховыми центрами.

Ядра, расположенные в передних и задних буграх четверохолмия, обеспечивают в ответ на зрительные и звуковые раздражения, возникновение «сторожевого» рефлекса, который проявляется в повороте головы и туловища в сторону раздражителя.

Промежуточный мозг является конечным отделом мозгового ствола и сверху полностью покрыт большими полушариями. Его делят на четыре основные области: зрительные бугры (таламус), подбугорная область (гипоталамус), надбугорная область и забугорная область. Зрительные бугры (таламус) представляют собой отдел центральной нервной системы, состоящий из серого вещества, сгруппированного ядрами, к которым приходят афферентные пути почти от всех рецепторов, воспринимающих раздражения внешней и внутренней среды (от кожи, мышц, зрительных и слуховых рецепторов, внутренних органов и др.). Из зрительных бугров информация поступает в кору больших полушарий головного мозга.

Подбугорная область (гипоталамус) располагается книзу от таламуса и имеет в своём составе около 32 ядер. Он нервными путями связан с таламусом, корой больших полушарий, ретикулярной формацией ствола, с некоторыми железами внутренней секреции и гипофизом.

Надбугорная область относительно мала и связана с железой внутренней секреции-эпифизом.

Забугорная область состоит из парных образований – внутренних и наружных коленчатых тел.

По функциональному значению ядра таламуса делят в зависимости от характера их влияний на кору больших полушарий на две группы: специфические и неспецифические ядра.

Специфические ядра таламуса осуществляют регуляцию тактильной, температурной, болевой и вкусовой чувствительности, а также слуховых и зрительных ощущений. Ядра таламуса совместно с другими структурами принимают участие в создании эмоциональной окраски ощущений.

Неспецифические ядра таламуса, создающие реакцию вовлечения, передают информацию к коре больших полушарий главным образом через полосатое тело. В ядрах гипоталамуса расположены высшие центры вегетативной нервной системы. При их раздражении возникают реакции аналогичные влияниям парасимпатической нервной системы: торможение деятельности сердца, расширение некоторых сосудов, усиление двигательной функции желудочно-кишечного тракта, дефекация, мочеиспускание, увеличение образования инсулина, сужение зрачка и глазных щелей.

С ядрами гипоталамуса связана регуляция водного обмена. Ядра гипоталамуса принимают участие в образовании некоторых гормонов, в регуляции пищевого поведения, в возникновении реакции ярости. В гипоталамусе локализуются центры насыщения и голода, с ним связана регуляция температуры тела. Гипоталамус принимает участие в регуляции поведенческих реакций: положительные поведенческие реакции (радость, удовольствие и др.) связывают с передним отделом, а отрицательные реакции (страх, ярость, гнев и др.) – с задним отделом гипоталамуса.

Конечный мозг состоит из двух полушарий большого мозга, каждое из которых представлено плащом, обонятельным мозгом и базальными ядрами. Полостью конечного мозга являются боковые желудочки, находящиеся в каждом из полушарий. Полушария большого мозга отделены друг от друга продольной щелью большого мозга и соединяются при помощи мозолистого тела.

Кора большого мозга образована белым и серым веществом. В коре выделяют 6 слоёв нервных клеток, различные её отделы имеют разную толщину. Поверхность полушарий изрезанна глубокими щелями, бороздами. Усложняют рельеф расположенные между ними участки – извилины.

Щели и борозды подразделяют полушария на лобную, теменную, височную, затылочную и островковую доли.

Белое вещество полушарий большого мозга образует белый полуовальный центр, который состоит из огромного числа нервных волокон. Все нервные волокна представлены тремя системами проводящих путей конечного мозга:

· ассоциативными;

· комиссуральными;

· проекционными.

У новорожденного головной мозг относитель­но большой, масса его в среднем 390 г (340 — 430) у мальчиков и 355 г (330 — 370) у девочек, что составляет 12 —13 % массы тела (у взрослого — примерно 2,5 %). К концу первого года жизни мас­са головного мозга удваивается, а к 3 — 4 годам — утраивается. После 7 лет масса головного мозга возрастает медленно и к 20 — 29 годам достигает максимального значения (1355 г — у мужчин и 1220 г— у женщин). В последующие возрастные периоды, вплоть до 60 лет у мужчин и 55 лет у женщин, масса мозга суще­ственно не изменяется, а после 55 — 60 лет отмечается некоторое уменьшение ее.

У новорожденного лучше развиты филогенетически более ста­рые отделы мозга. Масса ствола мозга равна 10,0 — 10,5 г, что со­ставляет примерно 2,7 % массы тела (у взрослого — около 2%). К моменту рождения большинство ядер ствола мозга хорошо раз­вито, отростки их нейронов миелинизированы.

Структуры среднего мозга к моменту рождения дифференци­рованы недостаточно. Такие ядра, как красное ядро, черное ве­щество, созревают в постнатальный период, формируя нисходя­щие проводящие пути экстрапирамидной системы.

Промежуточный мозг у новорожденного развит относитель­но хорошо. К моменту рождения дифференцированы специфические и неспецифические ядра таламуса, благодаря чему сформированы все виды чувствительности. Становление ассоциативных ядер происходит после рождения и связано с развитием ассоциативных полей коры. Окончательное созревание таламических ядер заканчивается примерно к 13 годам. Структуры гипота­ламуса у новорожденных недостаточно дифференцированы, в связи с чем у них несовершенны механизмы терморегуляции, ре­гуляция обменных процессов. Дифференцировка ядер гипотала­муса происходит неравномерно. К 2 —3-летнему возрасту боль­шинство гипоталомических ядер сформировано, но их оконча­тельное функциональное созревание происходит к 15 — 16 годам.

Мозжечок. Масса мозжечка у новорожденного составляет 20 г (5,4 % массы мозга). К 5 мес. жизни масса мозжечка увеличивает­ся в 3 раза, к 9 мес. — в 4 раза (ребенок умеет стоять, начинает ходить). У годовалого ребенка масса мозжечка составляет — 90 г. К 7 годам она достигает нижней границы массы мозжечка взрос­лого человека (130 г). Особенно интенсивное развитие структур мозжечка происходит в период полового созревания.

Полушария большого мозга. Новая кора в структурах полуша­рий начинает формироваться в конце второго месяца внутриут­робного периода. На протяжении всей внутриутробной жизни в развитии неокортекса выделяют три периода: ранний (миграцион­ный); средний (период предварительной дифференцировки на слои); поздний (период заключительной дифференцировки). Ранний период охватывает промежуток со 2-го по 4-й лунный месяц. В это время наблюдается миграция нейробластов из глу­боких (околожелудочковых) слоев конечного мозгового пузыря в корковую пластинку. В период с 7-й по 10-ю неделю начинают формироваться нижние (глубокие) слои коры (V и VI). Несколь­ко позже (на 13— 15-й неделе) происходит дифференцировка вер­хних слоев — I, II, IIIи IV. Начиная с 4-го месяца внутриутроб­ной жизни происходит предварительная дифференцировка коры на клеточные слои, образуются первич­ные борозды и извилины. На 5-м месяце внутриутробного пери­ода появляются следующие первичные борозды: боковая, цент­ральная, шпорная, борозда мозолистого тела. Вторичные бороз­ды (лобные, височные и др.) начинают появляется с 6-го месяца внутриутробного периода. После 7-го месяца внутриутробной жизни начинают формироваться третичные борозды. Появляют­ся индивидуальные вариации рисунка борозд и извилин. Проис­ходит значительное увеличение поверхности коры. К моменту рождения число нейронов достигает 14 — 16 млрд., как у взросло­го человека. Нейроны в коре новорожденного имеют веретенооб­разную форму и слабое развитие дендритов.

После рождения в течение первых трех лет происходит интен­сивный рост отростков нейронов, их миелинизация, дифференцирование нейронов в слоях коры. В период от 3 до 10 лет увели­чивается количество ассоциативных волокон. За счет интенсив­ного развития IIIслоя увеличивается толщина коры. В этот пе­риод в основном завершаются процессы развития корковых фор­маций. Однако тонкая дифференцировка в ассоциативных полях продолжается до 16 — 18 лет. Созревание различных корковых тер­риторий идет асинхронно. Первыми дифференцируются поля соматосенсорной зоны коры, затем — двигательная кора, после чего формируются зрительная и слуховая проекционные корковые зоны. Ассоциативные поля коры вступают в процесс развития последними.

Базальные ядра в период внутриутробного развития созрева­ют неравномерно. К семилетнему возрасту происходят окон­чательное созревание базальных ядер и формирование их связей с корой, что и обеспечивает выполнение более точных и коорди­нированных произвольных движений.

Головной мозг, как и спинной, окружён тремя соединительнотканными листками, или оболочками, являющимися продолжением оболочек спинного мозга.

Твёрдая оболочка головного мозга является одновременно надкостницей на внутренней поверхности костей черепа, с которыми связана непрочно.

Паутинная оболочка располагается кнутри от твёрдой мозговой и отделена от неё субдуральным пространством.

Мягкая (сосудистая) оболочка – это самая внутренняя из оболочек головного мозга. Она состоит из соединительной ткани, образующей два слоя (внутренний и наружный), между которыми залегают кровеносные сосуды.

Помимо этого в головном мозге размещается лимбическая система и ретикулярная формация.

Под лимбической системой понимают морфофункциональное объединение структур мозга, которые обуславливают эмоциональную окраску поведения. Лимбическая система характеризуется обилием двусторонних связей с другими отделами мозга и внутри своих структур. Она обеспечивает также поддержание гомеостаза, регулирует цикл “сон-бодрствование”, участвует в процессах обучения и памяти.

Ретикулярная формация (сетчатое вещество) объединяет ряд структур, начиная со спинного мозга и заканчивая головным. Ретикулярная формация вместе с лимбической системой выполняет функции активирующих систем мозга.

Вегетативную нервную систему (автономную) делят на два основных отдела, симпатическую и парасимпатическую нервную систему. В последнее вреия выделяют еще один отдел – метасимпатическую нервную систему.

 

 

Симпатическая нервнаясистема состоит из центральной части и периферической. Центральная часть симпатической нервной системы представлена телами нейронов, расположенными в боковых рогах серого вещества грудных и поясничных сегментов спинного мозга, а периферическая – парными пограничными симпатическими стволами, которые расположены справа и слева от позвоночного столба. Они начинаются на уровне шейных позвонков и заканчиваются у копчика. Пограничный симпатический столб состоит из узлов (ганглиев), расположенных посегментно и соединённых между собой.

От нейронов спинного мозга сначала в составе передних корешков, а затем в виде отдельной ветви идут отростки к ганглиям симпатической цепочки, где осуществляется передача возбуждения с одного нейрона на другой. От ганглиев симпатической цепочки импульс идёт к рабочему органу. Путь от центральной нервной системы до симпатического ганглия называют преганглионарным, а от ганглия до рабочего органа – постганглионарным. Часть постганглионарных нейронов лежит в узлах вегетативных нервных сплетений, располагающихся внутри органов (солнечное, сердечное, подчревное и др.). Постганглионарные волокна симпатической нервной системы идут на периферию к органам либо в составе смешанных нервов, либо в виде отдельных симпатических нервов. Особенность симпатической нервной системы заключается в том, что у неё преганглионарный путь короткий, а постганглионарный значительно длиннее.

Симпатическую нервную систему делят на отделы: шейный, от ганглиев которого волокна идут к голове и части органов грудной полости; грудной, иннервирующий органы грудной части тела и некоторые органы брюшной полости; брюшной, иннервирующий органы брюшной полости и дающий ветви к некоторым органам грудной полости; тазовый, иннервирующий органы малого таза.

Центральные нейроны парасимпатической нервной системы располагаются в среднем и продолговатом отделах головного мозга и в III-V крестцовых сегментах спинного мозга. От них преганглионарные волокна идут к парасимпатическим ганглиям.

Парасимпатические ганглии располагаются диффузно около или в самом иннервируемом органе. В связи с этим в парасимпатической нервной системе преганглионарные волокна имеют большую длину, а постганглионарные очень короткие.

Преганглионарные парасимпатические волокна идут в составе эфферентных нервов (глазодвигательного, лицевого, языкоглоточного и блуждающего), отходящих от среднего и продолговатого мозга. Самый крупный парасимпатический нерв – блуждающий, регулирует работу всех органов и систем нашего тела: сердца, лёгких, пищеварительного тракта, печени. Крестцовый отдел парасимпатической нервной системы регулирует работу нижнего отдела кишечника, мочевого пузыря и мочеиспускательного канала, половых органов.

Симпатическая и парасимпатическая нервная система обладают различными функциональными свойствами.

Симпатическая нервная система регулирует работу всех органов и тканей нашего тела, её ветви подходят не только к внутренним органам, но и к скелетной мускулатуре. Волокна парасимпатической нервной системы не подходят к гладкой мускулатуре кожи, к скелетным мышцам и к большинству кровеносных сосудов. Парасимпатическую иннервацию имеют сосуды слюнных желез, языка и половых органов.

Парасимпатическая и симпатическая нервная система обладают противоположным влиянием на функции разных органов. Так, симпатический нерв ускоряет и усиливает работу сердца, а парасимпатический (блуждающий) тормозит; парасимпатический нерв вызывает сокращение кольцевой мускулатуры радужной оболочки глаза и в связи с этим сужение зрачка, а симпатический нерв вызывает расширение зрачка. Симпатическая часть вегетативной нервной системы способствует интенсивной деятельности организма, особенно в экстремальных условиях, когда требуется напряжение всех сил; парасимпатическая часть - система «отбоя», она способствует восстановлению истраченных организмом ресурсов, она способствует восстановлению истраченных организмом ресурсов. Раздражение симпатических нервов утомленной скелетной мышцы восстанавливает ее работоспособность. Все это дало основание говорить об адаптационно-трофической функции симпатической нервной системы.

Парасимпатическая нервная система обладает более высокой возбудимостью по сравнению с симпатической, более коротким латентным периодом.

Передача возбуждения в синапсах вегетативной нервной системы осуществляется с помощью медиаторов: медиатор симпатической нервной системы – адреналин, а парасимпатической и постганглионарных волокон симпатической нервной системы, иннервирующих сосуды потовых желез, - ацетилхолин.

В стенках органов пищеварительной и мочеполовой систем залегают интрамуральные нервные сплетения, благодаря которым становится возможным осуществление регуляции функций органа без участия центральных структур. Это позволило выделить интрамуральные нервные сплетения в третий отдел автономной нервной системы – метасимпатическую нервную систему.

Все отделы вегетативной нервной системы подчинены высшим вегетативным центрам, расположенным в промежуточном мозге. К центрам вегетативной нервной системы приходят импульсы от ретикулярной формации ствола мозга, мозжечка, гипоталамуса, подкорковых ядер и коры больших полушарий.

У новорожденных симпати­ческий и парасимпатический отделы вегетативной нервной сис­темы сформированы недостаточно. Однако преобладает влияние симпатического отдела, которое сохраняется на протяжении 6 — 7 лет после рождения. По мере созревания структур мозга усили­вается влияние вегетативной нервной системы на деятельность внутренних органов.

В развитии ЦНС отражён общий биологический закон – филогенетически более старые части мозга развиваются раньше, чем молодые. Развитие рефлекторных функций различных отделов мозга зависит от становления их морфологических (развитие нейронов, миелинизация волокон, образование связей между нейронами и др.) и функциональных (установление соответствующих величин лабильности, хронаксии, и др.) особенностей.




Поделиться с друзьями:


Дата добавления: 2017-02-01; Просмотров: 83; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.