Определение 47.9 Гиперболическим цилиндромназывается поверхность, координаты всех точек которой в некоторой системе координат удовлетворяют уравнению:
(34.1)
Общий вид гиперболического цилиндра изображён на рис.47.17
В сечении гиперболического цилиндра плоскостями могут получиться:
-гипербола (когда секущая плоскость не параллельна образующей гиперболического цилиндра или не пересекает её; читателю предлагаем самостоятельно доказать, что в этом случае в секущей плоскости должна получиться некоторая разрывная кривая второго порядка, т.е. гипербола);
- две прямые параллельные линии (в случае, если плоскость параллельна образующей гиперболического цилиндра (оси аппликат OZ) или проходит через неё, а также пересекает поверхность, но не касается её);
-одна прямая линия (для плоскости, касающейся цилиндрической поверхности);
-пустое множество (в случае, когда плоскость не пересекает гиперболический цилиндр).
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление