Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Простые матрицы.





Пусть матрица , так как С алгебраически замкнутое поле, то характеристический многочлен , где , ki – алгебраическая кратность корня .

Обозначим множество векторов удовлетворяющих собственному значению - подпространство, , где r – ранг матрицы .

 

Теорема. Если квадратная матрица А имеет собственное значение , а матрица имеет , то имеет кратность .

 

DF. Размерность называется геометрической кратностью собственного значения .

 

В свете этого определения теорема переформулируется следующим образом:

 

Теорема. Алгебраическая кратность собственного значения не меньше его геометрической кратности.

 

DF. Матрица называется простой, если аглебраическая кратность каждого ее собственного значения совпадает с его геометрической кратностью.

 

Из линейной алгебры следует, что матрица простая тогда и только тогда, когда .

Если матрица А простая, тогда существует n линейно независимых собственных векторов x1, x2, …,xn таких, что , для . Запишем это равенство в матричном виде:

, т.е. А – простая тогда и только тогда, когда и .

 

Замечание. Обратим внимание на то, что собственные значения А и А’ совпадают. Действительно, собственные значения для А’ это значения . Таким образом характеристические многочлены матриц совпадают. Размерность , тогда . Поэтому, если - собственное значение матрицы А, то и является собственным значением матрицы А’, т.е. существует , что (*) или . Транспонируем (*) и получим (транспонируем это равенство). В этом случае называют левым собственным вектором матрицы А. Соответственно, - называют правым собственным подпространством, - называют левым собственным подпространством.

Рассмотрим следующую конструкцию: если матрица А простая, то существует n линейно независимых собственных векторов x1, x2, …, xn и существует n линейно независимых собственных векторов y1, y2,…,yn, где x1, x2, …, xn такие, что , (1); y1, y2,…,yn такие, что (2), .

Запишем равенство (1) в виде (3) Þ что, если А – простая, то существуют матрицы X и Y, что или (**).

 

DF. Множества векторов x1, x2, …, xn и y1, y2,…,yn удовлетворяющие условию , т.е. называются квазиортогональными.

 

Учитывая равенство (**) и определение делаем вывод: множества левых и правых собственных векторов простой матрицы А квазиортогональны и .

 

Очень важной для матриц является следующая теорема:

 

СПЕКТРАЛЬНАЯ ТЕОРЕМА. Если А – простая матрица порядка n над полем С и p(x) многочлен из кольца C[x], и x1, x2, …, xn и y1, y2,…,yn – множества правых и левых собственных векторов матрицы А, то , а сопутствующая матрица , где .



 

Следствие. Сопутствующие матрицы обладают следующими свойства:

1.

2.

3.

Пример. Показать, что матрица простая. Найти сопутствующие матрицы для матрицы А и использовать их для А20, p(x)=x20.

Решение:

Þ

существуют 2 линейно независимые правые и левые системы собственных векторов.

Найдем правые собственные векторы:

Найдем левые собственные векторы:

Найдем сопутствующие матрицы:

.

 





Дата добавления: 2014-01-04; Просмотров: 723; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

studopedia.su - Студопедия (2013 - 2021) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.003 сек.