КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Пример. Вычислить определитель третьего порядка
Вычислить определитель третьего порядка . Решение. . Пусть дана квадратная матрица А n -го порядка. Минором элемента матрицы n -го порядка называется определитель матрицы -го порядка, полученный из матрицы А вычеркиванием i- строки и j- столбца, на пересечении которых расположен этот элемент. Рассмотрим квадратную матрицу третьего порядка (1). Минором элемента матрицы третьего порядка является определитель второго порядка:
Минором элемента матрицы третьего порядка является определитель второго порядка:
Алгебраическим дополнением элемента матрицы n -го порядка называется минор этого элемента, умноженный на , где - сумма номеров строки и столбца, на пересечении которых расположен этот элемент. Алгебраическое дополнение элемента обозначается такой же прописной буквой, что и сам элемент. Так алгебраическое дополнение элемента обозначается , алгебраическое дополнение элемента обозначается . Пример. Найти алгебраические дополнения всех элементов матрицы Решение. ;;
; ;
;;
;;
.
Важное значение для вычисления определителей имеет следующая теорема. Теорема Лапласа. Определитель квадратной матрицы равен сумме произведений элементов любой строки или столбца на их алгебраические дополнения: - разложение по элементам i -ой строки, i=1, 2,…,n. - разложение по элементам j -ого столбца, j=1, 2,…,n. Доказательство. Убедимся в справедливости теоремы на примере определителя третьего порядка. Разложим его по элементам первой строки:
- полученное выражение совпадает с определением определителя третьего порядка. Аналогичный результат получаем при разложении определителя матрицы по любой строке или столбцу.
Дата добавления: 2014-01-05; Просмотров: 439; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |