Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Определители n-го порядка




Пусть дана матрица

, причем.

Определение: Определителем n-го порядка называется алгебраическая сумма n! слагаемых, каждое из которых является произведением n сомножителей, взятых по одному из каждой строки и каждого столбца матрицы А. Знак перед слагаемым определяется по правилу знаков:

Определение: Пусть – произвольная перестановка чисел 1,2,3...n. Говорят, что элементы и образуют инверсию (нарушение порядка), если, а. Перестановка чисел 1,2,3...n называется четной, если число инверсий, образованных ее элементами, четно, в противном случае она называется нечетной.

Чтобы определить знак перед слагаемым, нужно расположить сомножители, в него входящие, в порядке возрастания первых индексов и рассмотреть перестановку, образованную вторыми индексами. Если эта перестановка четная, то ставим ²+², если нечетная, то ²–².

 

Определение: Рассмотрим перестановку:

.

Поменяем местами и, получим перестановку:

.

Говорят, что перестановка В получается из А транспозицией элементов и.

 

Утверждение: Всякая транспозиция меняет четность перестановки на противоположную.

Доказательство: Частный случай: транспозиция соседних элементов меняет четность перестановки.

 

 

Все элементы перестановок А и В, кроме и, образуют одни и те же инверсии. Элемент с элементами и в перестановках А и В образует одни и те же инверсии. Элемент с элементами и в перестановках А и В образует одни и те же инверсии. Если элементы и в перестановке А не образовывали инверсии, то в В – образуют, если в А – образовывали, то в В уже не будут образовывать. Таким образом, в результате транспозиции соседних элементов число инверсий либо увеличилось, либо уменьшилось на единицу. Четность поменялась.

Общий случай. Чтобы совершить транспозицию двух произвольных элементов перестановки, будем последовательно переставлять соседние элементы. Для того, чтобы поменять местами элементы и, сначала k раз меняем элемент с,,,...,, затем раз меняем до. Таким образом, перестановка совершается раз. Четность меняется на противоположную.

 

Утверждение: Рассмотрим все перестановки n символов 1,2,3,...,n. Число четных перестановок равно числу нечетных перестановок и равно.

Доказательство: Выпишем все четные перестановки и зададим отображение с нечетными по правилу:

.

Все перестановки являются нечетными согласно предыдущей теореме.

Указанное нами отображение является биекцией множества всех четных перестановок на множество всех нечетных перестановок, в самом деле, по указанному правилу каждой четной перестановке ставится в соответствие единственная нечетная, т.е. это отображение, очевидно, инъективно:. Указанное отображение сюрьективно, в самом деле, каждая нечетная перестановка В является образом той четной перестановки А, которая получается из В заменой в В местами первого и второго символов, следовательно, отображение биективно, следовательно, число четных перестановок равно числу нечетных равно.

Определение: Всякое биективное отображение множества на себя называется подстановкой.

Подстановку, заданную на множестве 1,2,3,...,n удобно записывать виде: или, где первая и вторая строчки – подстановки.

Подстановка определяется с точностью до расположения столбцов: если в подстановке поменять местами любые два столбца, то получится та же подстановка.

Определение: Подстановка называется четной, если перестановки, записанные в первой и второй строчках либо обе четные, либо обе нечетные. В противном случае подстановка называется нечетной. Четность подстановки не изменится, если поменять в ней любые два столбца, следовательно, число четных подстановок равно числу нечетных, равно.

Теперь правило знаков в определении определителя можно сформулировать так: – произведение n сомножителей, взятых по одному из различных строчек и различных столбцов. Рассмотрим подстановку. Если она четная, то перед слагаемым ставится знак ²+², если нечетная, то ²–².

Пример:

1) Пусть дана матрица, тогда через обозначим транспонированную матрицу:

. Докажем, что определитель равен определителю А. ().

 

Доказательство: Рассмотрим слагаемое входящее в det A. Элемент а является произведением сомножителей, принадлежащих разным строкам и столбцам матрицы А, и, следовательно, разным строкам и столбцам матрицы, следовательно, каждый элемент является слагаемым и в и наоборот. Знак элемента а в определителе определяется четностью подстановки, а в – четностью подстановки. Но эти две подстановки одновременно либо четные либо нечетные.

 

2) Если в определителе все элементы какой-либо, скажем i-ой строки равны 0, то этот определитель равен 0.

Доказательство: В самом деле, по определению определителя все элементы нулевой строки будут входить в каждое слагаемое, из которых состоит определитель, следовательно, определитель есть сумма n! нулей.

3) Если в определителе поменять местами i и j строчки, то его значение изменится на противоположный.

В самом деле, пусть получена из матрицы а заменой двух строк: i и j. Все слагаемые вида входят и в определитель матрицы А и в определитель матрицы, знак перед этим слагаемым определяется с помощью подстановки:, а знак перед этим же слагаемым в определяется с помощью подстановки

. Эти подстановки различной четности.

 

 

Библиография:

1. Воеводин В.В. Линейная алгебра. СПБ.: Лань, 2008, 416 с.

2. Беклемишев Д. В. Курс аналитической геометрии и линейной алгебры. М.: Физматлит, 2006, 304 с.

3.Кострикин А.И. Введение в алгебру. часть II. Основы алгебры: учебник для вузов, -М.: Физико-математическая литература, 2000, 368 с

 

Лекция №8 (2 семестр)

 

Тема: Ранг матрицы. Базисные строки – база векторов – строк. Определитель Грамма и линейная зависимость.

 

Содержание:

Определение: Дана матрица

.

Пусть в А выделены строчки с номерами и столбцы. Элементы, стоящие на пересечении выбранных столбцов и строк образуют матрицу k-того порядка. Определитель М этой матрицы называется минором k-того порядка. Если в матрице А вычеркнуты выбранные строки и столбцы, то оставшиеся элементы образуют матрицу n-k-того порядка. Определитель этой матрицы называется дополнительным минором к минору М.

Определение: Пусть выбраны строки с номерами и столбцы с номерами. Выражение называется алгебраическим дополнением минора М.

Теорема Лапласа: Пусть в квадратной матрице А выбраны k строк с номерами, где. Сумма произведений всевозможных миноров k -того порядка, расположенных в выбранных строках на их алгебраические дополнения равны определителю матрицы А.




Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 7864; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.