КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Выработка продукции на предприятии
Индивидуальные (однотоварные) индексы (гр.6 табл.8.1) показывают, что в отчетном периоде выпуск продукции А остался на уровне базисного периода, продукции Б — увеличился на 20%, а выпуск продукции В снизился на 30%. 1. Для того чтобы на основе данных табл. 8.1 об изменениях выпуска всей продукции, используется общий индекс физического объема продукции — формула (8.4):
Следовательно, физический объем всей продукции в отчетном периоде составляет 83,3% от его уровня в базисном периоде, он снизился за это время на 16,7%, т. е. (0,833 100 - 100). Вычитая из числителя знаменатель, находим абсолютный прирост (снижение) стоимости продукции в неизменных ценах, =204000-245000 = -41000, т.е.-40млн руб. Следовательно, в отчетном периоде стоимость продукции уменьшилась в абсолютном выражении на 41 млн руб. (только за счет снижения на 16,7% физического объема производства продукции). 2. Сделав расчет индекса стоимости продукции по формуле (8.3), найдем, как изменился за этот период общий объем продукции в фактических ценах (т.е с учетом изменения цен): Общий выпуск продукции (стоимость) в фактических ценах в текущем периоде составил 90,8% ее выпуска в базисном периоде, или с учетом изменения цен снизился на 9,2%, т.е. (0,908 • 100 - 100); выпуск продукции уменьшился в абсолютном выражении на 22,6 тыс. руб., ∑ q1 p0 -∑ q0 p0. Значение общего индекса Ipq зависит от изменения двух индексируемых величин: количество товаров (q1,q0) и цен (p1, p0). Она характеризует изменение объема продукции и в целом продукции в целом, т.е. отражает одновременное влияние обоих факторов — изменение и количеств товаров и изменение уровня цен. Этот индекс чаще вычисляется в торговле, когда необходимо знать изменение товарооборота в фактических ценах. В промышленности же преимущественно исчисляется индекс физического объема продукции в сопоставимых, фиксированных ценах, позволяющих определить динамику выпускаемой продукции. Агрегатный способ исчисления общих индексов в статистике является основным наиболее распространенным, вместе с тем применяется и другой способ расчета общих индексов как средних из соответствующих индивидуальных индексов. К исчислению таких средневзвешенных индексов прибегают тогда, когда имеющаяся в распоряжении информация не позволяет рассчитать общий агрегатный индекс. Так, если неизвестны количества произведенных отдельных видов продукции в натуральных измерителях, но известны индивидуальные индексы и стоимость продукции базисного периода (p0q0), можно определить средний арифметический индекс физического объема продукции. Исходной базой построения средневзвешенного индекса физического объема продукции служит его агрегатная форма, см. формулу (8.4): Из имеющихся данных непосредственно можно только получить знаменатель этой формулы. Для нахождения числителя используем формулу индивидуального индекса объема продукции , из которой следует, что q1 = iq ∙ q0. Подставляя данное выражение в числитель агрегатной формы, получаем общий индекс физического объема в форме среднего арифметического индекса физического объема продукции, где весами служит стоимость отдельных видов продукции в базисном периоде(q0 p0): (8.7) При выборе весов следует иметь в виду, что средний индекс должен быть тождественен агрегатному, который является основной формой индекса. Если известны данные, позволяющие исчислить только числитель агрегатного индекса физического объема по формуле (8.4), то, аналогично выражая продукцию базисного периода как , производим замену в знаменателе агрегатной формы. В результате получаем общий индекс физического объема в форме среднего гармонического взвешенного индекса физического объема продукции, где весами служит стоимость продукции отчетного периода в базисных(или сопоставимых) ценах(q1 p0): (8.8) В форме средней гармонической взвешенной индекс физического объема используется только в аналитических целях. Следовательно, применение той или иной формулы индекса физического объема (агрегатного, среднего арифметического или среднего гармонического) зависит от имеющихся в нашем распоряжении конкретных данных и цели исследования. Так, при наличии данных о стоимости продукции в сопоставимых ценах в базисном периоде общий индекс физического объема продукции должен рассчитываться как средний арифметический взвешенный (см. табл. 8.2): Задача 2. Имеются данные выпуска продукции по заводу строительных пластмасс (табл. 8.2.): Таблица 8.2
Определить: сводную оценку изменения объема производства продукции (в натуральном выражении) Решение: 1. Из условия следует, что индивидуальные индексы по видам продукции имеют следующие значения: i’=1,1; i”=0,9; i’’’=0,75. 2. Индекс физического объема продукции: Следовательно, объем производства в натуральном выражении во втором квартале по сравнению с первым уменьшился на 10%. 8.3. Общие индексы качественных показателей Каждый качественный показатель связан с тем или иным объемным показателем, в расчете на единицу которого он исчисляется. Так, с объемом произведенной (проданной) продукции связаны такие качественные показатели, как цена р, себестоимость z и трудоемкость t. В условиях рыночных отношений в экономике особое место среди индексов качественных показателей отводится индексу цен. С помощью индекса потребительских цен (ИПЦ) осуществляются оценка динамики цен на товары производственного и непроизводственного потребления, пересчет важнейших стоимостных показателей СНС из фактических цен в сопоставимые. Индекс потребительских цен является общим измерителем инфляции, используется при корректировке законодательно устанавливаемого минимального размера оплаты труда, установлении ставок налогов и т.д. Рассмотрим принципы построения агрегатных индексов качественных показателей на примере индекса цен. Поскольку этот индекс характеризует изменение цен, индексируемой величиной в нем будет цена товара. Влияние количества проданных товаров должно быть устранено, а это возможно только в том случае, если количество продаваемых товаров неизменно в оба периода, т. е. количество товаров одного из периодов принято в качестве весов индекса. Вопрос о том, количество проданных товаров какого периода (текущего или базисного) следует взять в качестве весов при построении агрегатного индекса, решается исходя из сферы его применения. При построении индекса цен в качестве весов индекса обычно берут количество товаров, проданных в текущем (отчетном) периоде. Это объясняется тем, что такое исчисление индекса цен позволяет определить не только относительное изменение цен (путем деления числителя индекса ∑ q1 p1 на его знаменатель ∑ q1 p0 ), но и абсолютную экономию (—) или абсолютный перерасход (+) денежных средств покупателей в результате изменения цен на эти товары (как разность между числителем и знаменателем индекса): Агрегатный индекс цен с отчетными весами впервые предложен в 1874 г. немецким экономистом Г.Пааше и носит его имя. Формула агрегатного индекса цен Пааше: (8.9) где ∑ q1 p1 — фактическая стоимость продукции (товарооборот) отчетного периода; ∑ q1 p0 — условная стоимость товаров, реализованных в отчетном периоде по базисным ценам.
Индекс цен Пааше показывает, во сколько раз возрос (уменьшился) в среднем уровень цен на массу товара, реализованную в отчетном периоде, или сколько процентов составляет его рост (снижение) в отчетном периоде по сравнению с базисным периодом. Если из значения индекса цен IР вычесть 100%, т.е. (lp -100),то разность покажет на сколько процентов в среднем возрос (уменьшился) за это время уровень цен на массу товаров, реализованную в отчетном периоде. При таком методе, рассчитав индекс цен по формуле (8.9), можно подсчитать экономический эффект от изменения цен. Однако надо отметить, что указанный выбор весов при построении агрегатного индекса цен нельзя считать обязательным во всех случаях. В статистике многие задачи могут и должны решаться по-разному в зависимости от конкретной цели и особенностей исследования. Проиллюстрируем это следующими рассуждениями. Как известно, во время экономического кризиса резко растут цены. В результате ряд продуктов выпадает из потребления населения, особенно малообеспеченных. Допустим, что в условном базисном периоде в состав потребления входило 30 наименований продуктов (q0 = 30), а в текущем периоде - только 25 наименований (q1 = 25) Очевидно, что при такой ситуации индекс цен, рассчитанный пo q1, неправильно отразит изменение цен на те продукты, которые выпали из потребления из-за чрезмерного повышения цен. Поэтому в подобных случаях более правильно отразит изменение цен индекс, построенный по продукции базисного периода (предложен в 1864 г. немецким экономистом Э. Ласпейресом и носит его имя). Формула агрегатного индекса цен Ласпейреса: (8.10) Итак, агрегатные индексы цен с текущими весами определяются по формуле (8.9), с базисными весами по формуле (8.10). Эти индексы не идентичны. Значения индексов цен Пааше и Ласпейреса для одних и тех же данных не совпадают, так как имеют различное экономическое содержание. ► Индекс Пааше характеризует изменение цен отчетного периода по сравнению с базисным по товарам, реализованным в отчетном периоде, и фактическую экономию (перерасход) от изменения цен, т.е. индекс цен Пааше показывает, на сколько товары в отчетном периоде стали дороже (дешевле), чем в базисном. ► Экономическое содержание индекса Ласпейреса другое: он показывает, на сколько изменились цены в отчетном периоде по сравнению с базисным, но по той продукции, которая была реализована в базисном периоде, и экономию (перерасход), которую можно было бы получить от изменения цен, т. е. условную экономию (перерасход). Иначе говоря, индекс цен Ласпейреса показывает во сколько раз товары базисного периода подорожали (подешевели) из-за изменения цен на них в отчетном периоде. Поэтому применение формулы Ласпейреса ограничено особыми условиями исследования (например, при прогнозировании объема товарооборота, в связи с намечаемыми изменениями цен на товары в предстоящем периоде). При выборе периода, на основе которого производится взвешивание, нужно иметь в виду два противоречащих друг другу требования: • задачи изучения структуры и динамики цен требуют, чтобы расчеты показателей цен проводились в течение достаточно длительного периода на одной и той же базе сравнения; • непрерывно происходящие изменения в структуре производства и потребления, в соотношении цен на отдельные продукты, появление новых продуктов и исчезновение старых, изменение качества продуктов требуют возможно более частого изменения базисного периода. До перехода к рыночным отношениям отечественная статистика отдавала предпочтение индексу цен Пааше. В условиях же высокой инфляции взвешивание по весам отчетного периода (индекс Пааше) требует ежегодного (ежеквартального, ежемесячного) пересчета информации для формирования системы весов, что связано с большими затратами времени, материальных и трудовых ресурсов, поэтому, начиная с 1991 г., органы государственной статистики России определяют изменение общего уровня цен на товары и услуги по формуле Ласпейреса, которой отдается предпочтение и в зарубежной статистике. Наблюдение за изменением цен (тарифов) проводят на территории всех субъектов Российской Федерации. Для характеристики динамики цен на потребительском уровне рассчитывается сводный индекс потребительских цен (ИПЦ), который отражает динамику цен конечного потребления. «Идеальный» индекс цен Фишера (по имени американского экономиста И.Фишера) представляет собой среднюю геометрическую из произведения двух агрегатных индексов цен Ласпейреса и Пааше: (8.11) Идеальность формулы заключается в том, что индекс является обратимым во времени, т.е. при перестановке базисного и отчетного периодов полученный «обратный» индекс — это величина обратная величине первоначального индекса (этому условию отвечает любой индивидуальный индекс). Однако геометрическая форма индекса имеет принципиальный недостаток: она лишена конкретного экономического содержания. Так, в отличие от агрегатного индекса Пааше и Ласпейреса разность между числителем и знаменателем не покажет никакой реальной экономии (или потерь) из-за изменения цен. Индекс Фишера в силу сложности расчета и трудности экономической интерпритации на практике используется довольно редко, чаще всего — при исчислении индексов цен за длительный период времени для сглаживания тенденций в структуре и составе объема продукции, в которых происходят значительные изменения. Рассмотрим расчет индексов цен Пааше и Ласпейреса по данным табл.8.3. Задача 3. Имеются данные о продаже товаров на рынке (табл.8.3.). Определить: 1) индекс цен Пааше; 2) индекс цен Ласпейреса; 3) индекс физического объема продукции. Таблица 8.3
Дата добавления: 2014-01-06; Просмотров: 412; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |