![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Несобственные интегралы
Пусть функция Определение 1. Если же В отличие от интеграла Римана, только что определенный интеграл называется несобственным интегралом первого рода. Теорема 1. Если функция Пример 1. Пусть Аналогично определяется интеграл функции Интеграл функции Определение 2. Пусть функция
Этот интеграл называют несобственным интегралом ІІ рода. В первых двух случаях несобственный интеграл второго рода называется сходящимся, если пределы, указанные в его определении, конечны. Если эти пределы бесконечны или вовсе не существуют, то несобственный интеграл второго рода называется расходящимся. В третьем случае несобственный интеграл называется сходящим, если сходятся оба интеграла Пример 2. Пусть
Дата добавления: 2014-11-06; Просмотров: 355; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |