КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Кинетический момент системы
Рассмотрим систему материальной точки и выберем точку Мk массой mк,скорость которой Vk, на нее действуют внешние и внутренние силы и . Тогда для системы и точек: ; = К=1…….n ↓ ↓ кин.мом.сист. -главный момент внешних сил -главный момент внутренних сил равен 0 Тогда:(7). Тогда формула (4) выражает теорему о изменении кинетического момента системы в дифференциальной форме: векторная производная от момента количества движения системы по времени относительно центра 0 равна главному моменту внешних сил относительно такого же центра. (4) в координатной форме:
Следствие: закон сохранения кинетического момента системы: если (главный момент внешних сил относительно неподвижного центра = О), то и кинетический момент системы есть величина постоянная. т.е. (5) Кинетический момент твердого тела при вращении вокруг неподвижной оси Вычислим для точки массой m: Для всего тела: Здесь -момент инерции тела. Следовательно кинетический момент твердого тела относительно оси равен произведению моменту инерции тела на угловую скорость.
Для демонстрации закона сохранения кинетического момента системы представлена платформа Жуковского: ℓ→R
Дано: Найти: при переходе точки на край диска
I. т.е. = ↓ ↓ Т. к.. , то: ,
II. Если не равен 0: Если пусть интегрируя:
Здесь: 2) (2) В момент t сек точка массой переходит в положение В, имея при этом относительную скорость , тогда ↓ ↓
3) (3), где т. к. получаем , приравнивая равенства (2) и (3)
Дата добавления: 2014-10-15; Просмотров: 635; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |