КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Общего положения способом 2
Алгоритм построения линии пересечения плоскостей
Окончание табл. 5.4
Перпендикулярность двух плоскостей. Две плоскости перпендикулярны, если одна из них проходит через прямую линию, перпендикулярную другой плоскости. Пример. Через заданную прямую l и точку D, лежащую на этой прямой, построить плоскость P, перпендикулярную данной Σ (Δ АВС). Алгоритм решения (рис. 5.23). 1. Построить горизонталь h и фронталь f плоскости Σ (Δ АВС). 2. Через точку D провести перпендикуляры к натуральным величинам горизонтали h1 и фронтали f2. D1cm1 ^ h1; D2cm2 ^ f2. Вывод. Так как плоскость P задана (mÇl=D) при этом m^h, где hÌΣ(ΔАВС), то тогда плоскость P перпендикулярна плоскости Σ. Параллельность плоскостей. Две плоскости параллельны, если две пересекающиеся прямые одной плоскости параллельны двум пересекающимся прямым другой плоскости. На рис. 5.24 представлены две плоскости, которые параллельны, так как каждая из плоскостей содержит прямые, которые пересекаются в плоскости и параллельны прямым другой плоскости: Q(ΔABC)II P(DM∩DN)ÞABIIDM и BCIIDN; [A2B2]II[D2M2] и [B2C2]II[D2N2]; [A1B1]II[D1M1] и [B1C1]II[D1M1] (рис. 5.24).
Рис. 5.24. Плоскости параллельные пример. Через точку D провести плоскость Q, параллельно данной Σ(ΔАВС). Алгоритм решения (рис. 5.24). 1. Через точку D провести прямую DM, параллельно АВ. Получим [D1M1]II(A1B1) и [D2M2]II(A2B2). 2. Через точку D провести прямую DN, параллельно BC. Получим [D1N1]II(B1C1) и [D2N2]II(B2C2). Вывод. Так как плоскость Ω задана (DMÇDN = D), а плоскость Σ задана (ΔАВС), где ABÇBC=B, при этом DMllAB и DNllBC, то плоскости Q и Σ параллельны. Выводы по теме 1. Плоскость в пространстве может быть задана: – проекциями трёх точек, не лежащих на одной прямой линии; – проекциями прямой линии и точки, не лежащей на этой прямой; – проекциями двух параллельных прямых; – проекциями плоской фигуры; – следами плоскости. 2. Плоскость в пространстве занимает: общее положение, не перпендикулярное ни одной плоскости проекций и частное положение, перпендикулярное, либо параллельное плоскости проекций. Различают проецирующие плоскости и плоскости уровня. 3. Прямая линия может принадлежать плоскости, быть параллельна плоскости, пересекать плоскость. Среди прямых, принадлежащих плоскости, выделяют главные линии плоскости – прямые, принадлежащие плоскости, параллельные плоскостям проекций, – это горизонталь, фронталь, профильную прямую, линию наибольшего ската. Прямая перпендикулярна плоскости, если ее горизонтальная проекция перпендикулярна к горизонтальной проекции горизонтали плоскости, а фронтальная проекция прямой перпендикулярна к фронтальной проекции фронтали плоскости. 4. Две плоскости могут быть: параллельны и пересекаться. Линией пересечения двух плоскостей является прямая линия. Проекции прямой линии пересечения двух плоскостей общего положения определяются проекциями двух точек, принадлежащих одновременно обеим плоскостям.
Дата добавления: 2014-10-23; Просмотров: 447; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |